Python实现t-test(T检验)

这篇博客介绍了如何在Python中使用scipy库进行独立样本t检验。通过scipy.stats.ttest_ind()函数,我们可以对两个样本进行比较,例如实验组(request_e)和对照组(request_c)的需求量。博客强调了数据的排列顺序和p值处理,指出如果假设是单侧的,p值需要除以2。示例代码展示了如何进行t检验并打印t值和p值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在python中进行t-test很简单,只需要scipy包,不需要任何手动计算。
代码如下(为了节省空间数据只取全部数据表的前五个):

from scipy import stats
import numpy as np
import scipy.stats

request_c = np.array([30, 152, 267, 369, 478])
request_e = np.array([30, 152, 277, 383, 497])

t, pval = scipy.stats.ttest_ind(request_e, request_c)
print(t,pval)

需要注意:

  1. scipy.stats.ttest_ind()是双侧。如果alternative hypothesis是单侧的则需要将pval除以二;
  2. scipy.stats.ttest_ind()时将减数放前面,被减数放后面。这个例子中request_e是实验组需求量,request_c是对照组需求量,alternative hypothesis是实验组平均需求量更大,则将request_e放前面。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值