目录
一、初识树结构
树结构就像在生活中见到的树一样。树通常有一个根,根连接着树干,树干会分叉成树枝,树枝还会分叉成更小的树枝,在树枝的最后是叶子。
树综合了数组、链表、哈希表的优点(当然优点不足于盖过其他数据结构, 比如效率一般情况下没有哈希表高),并且也弥补了这些数据结构的缺点。为了模拟某些场景,使用树结构会更加方便, 比如文件的目录结构。
1.树的定义
树(Tree): n(n≥0)个结点构成的有限集合
当n=0时,称为空树
对于任一棵非空树(n> 0),它具备以下性质:
- 树中有一个称为“根(Root)”的特殊结点,用 r 表示;
- 其余结点可分为m(m>0)个互不相交的有限集T1,T2,... ,Tm,其中每个集合本身又是一棵树,称为原来树的“子树(SubTree)”
注意:
子树之间不可以相交
除了根结点外,每个结点有且仅有一个父结点;
一棵N个结点的树有N-1条边。
2.树的术语
1.结点的度(Degree):结点的子树个数.
2.树的度:树的所有结点中最大的度数. (树的度通常为结点的个数N-1)
3.叶结点(Leaf):度为0的结点. (也称为叶子结点)
4.父结点(Parent):有子树的结点是其子树的根结点的父结点
5.子结点(Child):若A结点是B结点的父结点,则称B结点是A结点的子结点;子结点也称孩子结点。
6.兄弟结点(Sibling):具有同一父结点的各结点彼此是兄弟结点。
7.路径和路径长度:从结点n1到nk的路径为一个结点序列n1 , n2,… , nk, ni是 ni+1的父结点。路径所包含边的个数为路径的长度。
8.结点的层次(Level):规定根结点在1层,其它任一结点的层数是其父结点的层数加1。
9.树的深度(Depth):树中所有结点中的最大层次是这棵树的深度。
二、树结构的表示
1.普通的表示方式
2.儿子-兄弟表示法
3.儿子-兄弟表示法旋转
所有的树本质上都可以使用二叉树模拟出来。
三、二叉树
1.二叉树的概念
几乎上所有的树都可以表示成二叉树的形式。如果树中每个节点最多只能有两个子节点,这样的树就成为"二叉树"。
(1).二叉树的定义
二叉树可以为空,也就是没有结点。
若不为空,则它是由根结点和称为其左子树TL和右子树TR的两个不相交的二叉树组成。
(2).二叉树有五种形态:
c和d是不同的二叉树,因为二叉树是有左右之分的。
2.二叉树的特性
二叉树有几个比较重要的特性:
一个二叉树第 i 层的最大结点数为:2^(i-1), i >= 1;
深度为k的二叉树有最大结点总数为: 2^k - 1, k >= 1;
对任何非空二叉树 T,若n0表示叶结点的个数、n2是度为2的非叶结点个数,那么两者满足关系n0 = n2 + 1。
3.特殊的二叉树
(1).完美二叉树(Perfect Binary Tree) , 也称为满二叉树(Full Binary Tree)
在二叉树中,除了最下一层的叶结点外,每层节点都有2个子结点,就构成了满二叉树
(2).完全二叉树(Complete Binary Tree)
除二叉树最后一层外,其他各层的节点数都达到最大个数。
且最后一层从左向右的叶结点连续存在,只缺右侧若干节点。
完美二叉树是特殊的完全二叉树。
举个例子: 下面不是完全二叉树, 因为D节点还没有右结点, 但是E节点就有了左右节点.
4.二叉树的存储
二叉树的存储常见的方式是数组和链表.
(1).使用数组存储
完全二叉树: 按从上至下、从左到右顺序存储
非完全二叉树:
非完全二叉树要转成完全二叉树才可以按照上面的方案存储。但是会造成很大的空间浪费
(2).链表存储
二叉树最常见的方式还是使用链表存储。
每个结点封装成一个Node,Node中包含存储的数据、左结点的引用、右结点的引用。