数据结构与算法 — 初识树结构、树结构的表示、二叉树的概念、特性及存储

目录

一、初识树结构

  1.树的定义

  2.树的术语

二、树结构的表示

  1.普通的表示方式

  2.儿子-兄弟表示法

  3.儿子-兄弟表示法旋转

三、二叉树

  1.二叉树的概念

  2.二叉树的特性

  3.特殊的二叉树

  4.二叉树的存储

        (1).使用数组存储

        (2).链表存储


一、初识树结构

树结构就像在生活中见到的树一样。树通常有一个根,根连接着树干,树干会分叉成树枝,树枝还会分叉成更小的树枝,在树枝的最后是叶子。

        树综合了数组、链表、哈希表的优点(当然优点不足于盖过其他数据结构, 比如效率一般情况下没有哈希表高),并且也弥补了这些数据结构的缺点。为了模拟某些场景,使用树结构会更加方便, 比如文件的目录结构。

  1.树的定义

        树(Tree): n(n≥0)个结点构成的有限集合

        当n=0时,称为空树

        对于任一棵非空树(n> 0),它具备以下性质

  • 树中有一个称为“根(Root)”的特殊结点,用 r 表示;
  • 其余结点可分为m(m>0)个互不相交的有限集T1,T2,... ,Tm,其中每个集合本身又是一棵树,称为原来树的“子树(SubTree)”

注意:

        子树之间不可以相交

        除了根结点外,每个结点有且仅有一个父结点;

        一棵N个结点的树有N-1条边。

 

  2.树的术语

        1.结点的度(Degree):结点的子树个数.

        2.树的度:树的所有结点中最大的度数. (树的度通常为结点的个数N-1)

        3.叶结点(Leaf):度为0的结点. (也称为叶子结点)

        4.父结点(Parent):有子树的结点是其子树的根结点的父结点

        5.子结点(Child):若A结点是B结点的父结点,则称B结点是A结点的子结点;子结点也称孩子结点。

        6.兄弟结点(Sibling):具有同一父结点的各结点彼此是兄弟结点。

        7.路径和路径长度:从结点n1到nk的路径为一个结点序列n1 , n2,… , nk, ni是 ni+1的父结点。路径所包含边的个数为路径的长度。

        8.结点的层次(Level):规定根结点在1层,其它任一结点的层数是其父结点的层数加1。

        9.树的深度(Depth):树中所有结点中的最大层次是这棵树的深度。

二、树结构的表示

  1.普通的表示方式

 

  2.儿子-兄弟表示法

 

 

  3.儿子-兄弟表示法旋转

 

所有的树本质上都可以使用二叉树模拟出来。

三、二叉树

  1.二叉树的概念

几乎上所有的树都可以表示成二叉树的形式。如果树中每个节点最多只能有两个子节点,这样的树就成为"二叉树"。

        (1).二叉树的定义

        二叉树可以为空,也就是没有结点。

        若不为空,则它是由根结点和称为其左子树TL和右子树TR的两个不相交的二叉树组成。

        (2).二叉树有五种形态:

 

c和d是不同的二叉树,因为二叉树是有左右之分的。

 

  2.二叉树的特性

        二叉树有几个比较重要的特性:

   一个二叉树第 i 层的最大结点数为:2^(i-1), i >= 1;

       深度为k的二叉树有最大结点总数为: 2^k - 1, k >= 1;

                对任何非空二叉树 T,若n0表示叶结点的个数、n2是度为2的非叶结点个数,那么两者满足关系n0 = n2 + 1。

 

 

 

  3.特殊的二叉树

        (1).完美二叉树(Perfect Binary Tree) , 也称为满二叉树(Full Binary Tree)

在二叉树中,除了最下一层的叶结点外,每层节点都有2个子结点,就构成了满二叉树

 

 

        (2).完全二叉树(Complete Binary Tree)

除二叉树最后一层外,其他各层的节点数都达到最大个数。

且最后一层从左向右的叶结点连续存在,只缺右侧若干节点。

完美二叉树是特殊的完全二叉树。

 

举个例子: 下面不是完全二叉树, 因为D节点还没有右结点, 但是E节点就有了左右节点.

 

 

  4.二叉树的存储

二叉树的存储常见的方式是数组和链表.

        (1).使用数组存储

完全二叉树: 按从上至下、从左到右顺序存储

 

 

非完全二叉树:

非完全二叉树要转成完全二叉树才可以按照上面的方案存储。但是会造成很大的空间浪费

 

 

        (2).链表存储

二叉树最常见的方式还是使用链表存储。

每个结点封装成一个Node,Node中包含存储的数据、左结点的引用、右结点的引用。



 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值