GAN|一些笔记

在PyTorch中,optimizer.zero_grad()用于在每次训练迭代开始时清零梯度,防止梯度累积。损失值的下降表明神经网络的性能提升,损失图有助于分析训练效果。文章提供了《pytorch生成对抗网络编程》的GitHub代码链接,帮助读者实践和理解相关内容。
摘要由CSDN通过智能技术生成
optimiser.zero_grad()
在每次训练网络之前,我们需要将梯度归零。否则,每次 loss. backward()计算出来的梯度会累积。
损失值的下降
意味着网络分类图像的能力越来越好。 损失图真的很实用,它让我们了解到网络训练是否有效。它也告诉我们训练是平稳的,还是不稳定的、混乱的。

 

 

 

 

 

 

《pytorch生成对抗网络编程》所有代码地址GitHub - makeyourownneuralnetwork/gan: python notebooks accompanying the book Make Your Own GAN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值