optimiser.zero_grad()
在每次训练网络之前,我们需要将梯度归零。否则,每次
loss. backward()计算出来的梯度会累积。
损失值的下降
意味着网络分类图像的能力越来越好。 损失图真的很实用,它让我们了解到网络训练是否有效。它也告诉我们训练是平稳的,还是不稳定的、混乱的。
《pytorch生成对抗网络编程》所有代码地址GitHub - makeyourownneuralnetwork/gan: python notebooks accompanying the book Make Your Own GAN