最少拦截系统——经典动态规划LIS问题

题目描述

Problem Description
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能超过前一发的高度.某天,雷达捕捉到敌国的导弹来袭.由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹.
怎么办呢?多搞几套系统呗!你说说倒蛮容易,成本呢?成本是个大问题啊.所以俺就到这里来求救了,请帮助计算一下最少需要多少套拦截系统.

Input
输入若干组数据.每组数据包括:导弹总个数(正整数),导弹依此飞来的高度(雷达给出的高度数据是不大于30000的正整数,用空格分隔)

Output
对应每组数据输出拦截所有导弹最少要配备多少套这种导弹拦截系统.

输入样例

8 389 207 155 300 299 170 158 65

输出样例

2

题目分析

其实就是求最长不下降子序列长度。

最长不下降子序列(LIS)_AryCra_07的博客-CSDN博客

代码稍微改了一下:
 

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 110000;
int A[N], dp[N];
int main() {
    ios::sync_with_stdio(false); //关闭流同步提高cin速度
    int n;
    while(cin >> n){
        for(int i = 1; i <= n; i ++) {
            cin >> A[i];
        }
        int ans = -1; //记录最大的dp[i]
        for(int i = 1; i <= n; i ++){ //按顺序计算dp[i]
            dp[i] = 1; //边界初始条件:dp[i]开始均为1
            for(int j =1; j < i; j ++){
                if(A[i] >= A[j] && (dp[j] + 1) > dp[i])
                    dp[i] = dp[j] + 1; //状态转移方程
            }
            ans = max(ans, dp[i]);
        }
        cout << ans << '\n';
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AryCra_07

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值