无穷级数(四)函数的幂级数展开

一、泰勒级数

第三节讨论了幂级数的收敛域及其和函数的性质,本节则研究一个与其相反的问题:已知一个函数 f ( x ) f(x) f(x),是否存在幂级数,使它的和函数等于函数 f ( x ) f(x) f(x).如果存在这样的幂级数,那么函数 f ( x ) f(x) f(x)能展开成幂级数,而这个幂级数就表示函数 f ( x ) f(x) f(x).

泰勒公式指出若函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某邻域内具有直到 n + 1 n+1 n+1阶导数,则在该邻域内 f ( x ) f(x) f(x) n n n阶泰勒公式为
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x) f(x)=f(x0)+f(x0)(xx0)+...+n!f(n)(x0)(xx0)n+Rn(x)
其中,余项 R n ( x ) R_n(x) Rn(x)的拉格朗日形式为
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1
ξ \xi ξ是介于 x 0 x_0 x0 x x x之间的某个值.

如果 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某邻域内具有任意阶导数,可以设想,泰勒公式中的多项式部分随着项数无限增多而成为幂级数,即
f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + . . . f(x_0)+f^{'}(x_0)(x-x_0)+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+... f(x0)+f(x0)(xx0)+...+n!f(n)(x0)(xx0)n+...
则此幂级数称为 f ( x ) f(x) f(x)的泰勒级数.易知在 x = x 0 x=x_0 x=x0处,泰勒级数收敛于 f ( x 0 ) f(x_0) f(x0).除了 x = x 0 , x=x_0, x=x0泰勒级数是否一定收敛于 f ( x ) f(x) f(x)?下面的定理回答了这个问题.

定理一

设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某邻域内具有各阶导数,则函数 f ( x ) f(x) f(x)在该邻域内能展开成泰勒级数的充分必要条件是泰勒公式中的余项 R n ( x ) R_n(x) Rn(x)在该邻域内当 n → ∞ n\to \infty n时的极限为零,即
l i m x → ∞ R n ( x ) = 0 lim_{x\to \infty}R_n(x)=0 limxRn(x)=0

泰勒级数是一个 x − x 0 x-x_0 xx0的幂级数,若取 x 0 = 0 x_0=0 x0=0,则得到一个 x x x的幂级数
f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + . . . + f n ( 0 ) n ! + . . . f(0)+f^{'}(0)x+\frac{f^{''}(0)}{2!}x^2+...+\frac{f^{n}(0)}{n!}+... f(0)+f(0)x+2!f(0)x2+...+n!fn(0)+...
称此级数为 f ( x ) f(x) f(x)的麦克劳林级数.


下面介绍将函数展开为幂级数的方法.

(1)直接法

按定理一,先求出在点 x 0 x_0 x0处函数 f ( x ) f(x) f(x)的各阶导数,写出泰勒级数并求其收敛域,然后在收敛域内讨论余项 R n ( x ) R_n(x) Rn(x) n → ∞ n\to\infty n时极限是否为零.如果为零,则函数 f ( x ) f(x) f(x)能展开成泰勒级数.

注意 有例子表明,一个具有任意阶导数的函数的泰勒级数并非一定收敛于函数本身.这说明检验极限 l i m n → ∞ R n ( x ) lim_{n\to\infty}R_n(x) limnRn(x)是否为零很重要.

(2)间接法

先证明:如果 f ( x ) f(x) f(x)能展开为 x − x 0 x-x_0 xx0的幂级数,那么其展开式唯一,它一定与 f ( x ) f(x) f(x)的泰勒公式一致.这种方法的优点是可以避免研究余项.

一些泰勒展开参考公式

图源知乎@叶灵均

  • 3
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AryCra_07

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值