这篇论文《使用真实静态面部图像评估大五人格特质》发表于2020年的《Scientific Reports》,研究了如何利用真实生活中的静态面部图像来预测大五人格特质。
研究背景
人类的面部特征被认为可以提供关于个性和行为的线索。以往的研究已经发现,无论是人类专家还是人工智能系统,都可以通过面部图像(包括中性表情的静态图像)来推断个性特质。本研究旨在通过大量真实生活中的静态面部图像,预测男女的大五人格特质(包括外向性、宜人性、尽责性、神经质和开放性)。
研究方法
样本和程序:
-
研究对象为12,447名志愿者(59.4%为女性),他们提供了31,367张面部图像。
-
参与者完成了大五人格特质的自我报告问卷,并上传了他们的照片。
-
数据集被随机分为训练集(90%)和测试集(10%),用于验证预测模型。
数据筛选:
-
排除了不完整的问卷和随机或粗心的回答。
-
图像经过筛选,确保照片质量,包括中性表情、适当的光线和无妆容等。
大五人格测量:
-
使用了修改后的俄语版5PFQ问卷,包含75个项目,测量大五人格特质。
-
通过稳健的omega和GLB可靠性指数确认了量表的可靠性。
图像筛选和预处理:
-
图像被转换为灰度格式,并标准化为224x224像素。
-
测量了头部位置和情感中性,并相应地对图像进行了对齐和裁剪。
神经网络架构:
-
开发了一个基于ResNet的计算机视觉神经网络(NNCV),用于提取静态面部图像的不变特征。
-
训练了一个个性诊断神经网络(NNPD),使用NNCV提取的特征来预测大五人格特质。
研究结果
预测准确性:
-
人工神经网络模型在预测大五人格特质方面取得了显著的相关性,尽责性的相关性最高(男性为0.360,女性为0.335)。
-
平均绝对误差(MAE)范围在0.89到1.04个标准差之间。
-
内部相关系数(ICC)表明,79-88%的预测分数差异是由于个体之间的差异。
特质间相关性:
-
观察到的和预测的大五人格特质之间的相关性结构总体相似,但某些系数存在显著差异。
-
例如,预测的开放性与尽责性和外向性的关联更强,而与宜人性的关联为负相关。
讨论
本研究证实了人类个性与面部外观之间的关联,并证明了机器学习(特别是人工神经网络)可以从静态面部图像中揭示多维个性特征。研究结果表明,真实生活中的照片可以用于预测个性特质,其中尽责性是最容易被识别的特质。此外,研究还发现,女性的预测结果比男性更可靠。
结论
本研究证明了人工神经网络可以从真实生活中的静态面部图像中预测大五人格特质,尽管预测的准确性有限,但这一方法在个性评估领域具有潜在的应用价值。未来的研究可以进一步探索这些关联的生物学基础,以及面部特征在社会交流中的作用。