- 博客(12)
- 收藏
- 关注
原创 [基于LLM的家庭健康医生3]文生语音大模型OpenVoice
为了能够使得家庭医生能够通过语音进行回复,且语音是可以设置的(比如对任一家庭成员的语音进行微调),这会使得家庭医生的回复更具人性化。基于此方案,我们使用了一种OpenVoice轻量化的。
2025-05-02 20:02:48
329
原创 [基于LLM的家庭健康医生2]微调大模型
构建家庭健康医生时,微调(fine-tuning)是一个至关重要的技术。它使得预训练的模型能够更好地适应特定领域的任务和数据,从而提高其在该领域中的性能和准确性。微调的目标是让预训练的模型能够适应特定领域的需求。例如,在医疗健康领域,我们希望模型能理解医学术语、提供医学建议、分析病历数据等。通过在医学数据上进行微调,模型能够更好地理解和回答有关健康问题的对话。常见的微调技术有等,由于受限于计算资源,刚开始阶段采用LoRA进行微调。
2025-04-25 20:07:30
291
原创 [基于LLM的家庭健康医生1]调用LLM大模型
随着生活水平的提高,人们越来越关注身体健康。但是,在一些贫困的地区或者知识水平不高的人群中对于健康的认知很是匮乏。为了解决这个问题,设计一个基于LLM的家庭健康医生,可以通过实时的语音交互自动生成健康意见。
2025-04-20 14:51:25
554
原创 【NLP系列1】n-gram、Word2Vec、Transformer,理解NLP建模问题
如何有效地表示和建模自然语言,以捕捉语义、上下文和依赖关系,并提升预测与泛化能力。
2025-03-05 20:57:54
946
原创 自注意力self-attention理解(qkv计算、代码)
self-attention中的核心便是qkv的计算,首先是将输入向量分别乘上三个可学习的的矩阵得到Query(查询)、Key(键)、Value(值);再将q和k点乘达到全局建模的作用,将qk结果进行softmax得到Attention分数;最后将Attention和v相乘这个操作我的理解是:可以把Value这个矩阵理解成一个”筛子“(可以讨论讨论)
2025-01-07 19:46:48
2034
原创 YOLOv8预测代码predict.py修改框的显示类型、框的颜色等
在验证修改模型的有效性上经常需要可视化来展示有效性,predict.py能够根据生成的权重文件来进行目标检测。在ultralytics/cfg/default.yaml中展示了train、val、test、阶段所需的各种参数。比如如果在predict是不需要显示目标名称可将show_labels设置为False,具体参数想了解的可以评论。
2025-01-02 19:49:08
1403
原创 YOLOv5、rtsp-server、ffmpeg实现C/S模式实时视频检测
1.yolov5源码;2.rtsp-server、ffmpeg、vlc,现在即相关配置。具体配置可自行搜索;3.效果展示;4.本地推流至服务器,另一台主机进行拉流
2023-10-14 22:47:34
10898
19
原创 tt100k数据集转yolo格式
'''创建文件路径:param source: 源文件位置:param target: 目标文件位置'''# 遍历目录下的文件名,复制对应的图片到指定目录。
2023-10-14 19:58:14
1765
3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人