最大池化max-pooling和平均池化mean-pooling

       池化(Pooling)在目标检测中有重要作用,主要体现在以下几个方面:降维与特征压缩、提取关键信息、增强不变性、降噪与增强鲁棒性等等。其中在目标检测当中我们采用的最多的就是max-pooling和avg-pooling,下面来了解一下这两个池化的实现方式以及适用场景。

1.max-pooling

       首先我们通过图示来了解一下max-pooling的大致过程(假设池化窗口为2*2):

    

      前向:在2*2的max-pooling中,我们将4*4特征图分为四块,在四块区域当中选择最大值。

      反向:在前向传播当中,我们选取了四个子区域当中各自最大的值(位置为绿色标记位置)。在反向传播当中我们将最大值位置(绿色标记)置为最大值,其余置为0。

       特点:如果将0理解为背景,非0理解为目标。我们可以看到在max-pooling当中只激活了显著(最大值)特征的位置,而将其他弱特征置为0(背景)。因此max-pooling强调边缘、角点和高激活值区域,适合突出目标的关键特征

2.mean-pooling

    同样,我们通过图示来理解mean-pooling的实现过程:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值