pytorch 实现UNet

pytorch 实现UNet

在这里插入图片描述
将其分为双卷积、下采样、上采样和输出四个部分。
pytorch实现代码

import torch
import torch.nn as nn
import torch.nn.functional as F

class DoubleConv(nn.Module):
    """conv->BN->relu * 2"""
    def __init__(self, in_channels, out_channels, mid_channels = None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(mid_channels),
            nn.ReLU(inplace = True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )
        def forward(self, x):
    
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
UNet是一种用于图像分割的卷积神经网络结构,它可以用于医学图像分割、自然图像分割等领域。下面我来介绍如何使用PyTorch实现UNet图像分割。 1. 准备数据 首先,你需要准备好图像分割的数据集。这个数据集需要包括原始图像和对应的分割掩码图像。你可以使用任何你熟悉的数据集,比如Kaggle上的数据集,或者自己制作的数据集。 2. 定义UNet模型 接下来,你需要定义UNet模型。UNet模型由编码器和解码器两部分组成,编码器用于提取图像特征,解码器用于将特征映射回分割掩码图像。下面是一个简单的UNet模型实现: ```python import torch import torch.nn as nn class UNet(nn.Module): def __init__(self): super(UNet, self).__init__() # 编码器 self.conv1 = nn.Conv2d(3, 64, 3, padding=1) self.bn1 = nn.BatchNorm2d(64) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(64, 64, 3, padding=1) self.bn2 = nn.BatchNorm2d(64) self.relu2 = nn.ReLU(inplace=True) self.pool1 = nn.MaxPool2d(2, 2) self.conv3 = nn.Conv2d(64, 128, 3, padding=1) self.bn3 = nn.BatchNorm2d(128) self.relu3 = nn.ReLU(inplace=True) self.conv4 = nn.Conv2d(128, 128, 3, padding=1) self.bn4 = nn.BatchNorm2d(128) self.relu4 = nn.ReLU(inplace=True) self.pool2 = nn.MaxPool2d(2, 2) self.conv5 = nn.Conv2d(128, 256, 3, padding=1) self.bn5 = nn.BatchNorm2d(256) self.relu5 = nn.ReLU(inplace=True) self.conv6 = nn.Conv2d(256, 256, 3, padding=1) self.bn6 = nn.BatchNorm2d(256) self.relu6 = nn.ReLU(inplace=True) self.pool3 = nn.MaxPool2d(2, 2) self.conv7 = nn.Conv2d(256, 512, 3, padding=1) self.bn7 = nn.BatchNorm2d(512) self.relu7 = nn.ReLU(inplace=True) self.conv8 = nn.Conv2d(512, 512, 3, padding=1) self.bn8 = nn.BatchNorm2d(512) self.relu8 = nn.ReLU(inplace=True) self.pool4 = nn.MaxPool2d(2, 2) self.conv9 = nn.Conv2d(512, 1024, 3, padding=1) self.bn9 = nn.BatchNorm2d(1024) self.relu9 = nn.ReLU(inplace=True) self.conv10 = nn.Conv2d(1024, 1024, 3, padding=1) self.bn10 = nn.BatchNorm2d(1024) self.relu10 = nn.ReLU(inplace=True) # 解码器 self.upconv1 = nn.ConvTranspose2d(1024, 512, 2, stride=2) self.conv11 = nn.Conv2d(1024, 512, 3, padding=1) self.bn11 = nn.BatchNorm2d(512) self.relu11 = nn.ReLU(inplace=True) self.conv12 = nn.Conv2d(512, 512, 3, padding=1) self.bn12 = nn.BatchNorm2d(512) self.relu12 = nn.ReLU(inplace=True) self.upconv2 = nn.ConvTranspose2d(512, 256, 2, stride=2) self.conv13 = nn.Conv2d(512, 256, 3, padding=1) self.bn13 = nn.BatchNorm2d(256) self.relu13 = nn.ReLU(inplace=True) self.conv14 = nn.Conv2d(256, 256, 3, padding=1) self.bn14 = nn.BatchNorm2d(256) self.relu14 = nn.ReLU(inplace=True) self.upconv3 = nn.ConvTranspose2d(256, 128, 2, stride=2) self.conv15 = nn.Conv2d(256, 128, 3, padding=1) self.bn15 = nn.BatchNorm2d(128) self.relu15 = nn.ReLU(inplace=True) self.conv16 = nn.Conv2d(128, 128, 3, padding=1) self.bn16 = nn.BatchNorm2d(128) self.relu16 = nn.ReLU(inplace=True) self.upconv4 = nn.ConvTranspose2d(128, 64, 2, stride=2) self.conv17 = nn.Conv2d(128, 64, 3, padding=1) self.bn17 = nn.BatchNorm2d(64) self.relu17 = nn.ReLU(inplace=True) self.conv18 = nn.Conv2d(64, 64, 3, padding=1) self.bn18 = nn.BatchNorm2d(64) self.relu18 = nn.ReLU(inplace=True) self.conv19 = nn.Conv2d(64, 1, 1) def forward(self, x): # 编码器 x1 = self.relu1(self.bn1(self.conv1(x))) x2 = self.relu2(self.bn2(self.conv2(x1))) x3 = self.relu3(self.bn3(self.conv3(self.pool1(x2)))) x4 = self.relu4(self.bn4(self.conv4(x3))) x5 = self.relu5(self.bn5(self.conv5(self.pool2(x4)))) x6 = self.relu6(self.bn6(self.conv6(x5))) x7 = self.relu7(self.bn7(self.conv7(self.pool3(x6)))) x8 = self.relu8(self.bn8(self.conv8(x7))) x9 = self.relu9(self.bn9(self.conv9(self.pool4(x8)))) x10 = self.relu10(self.bn10(self.conv10(x9))) # 解码器 x = self.relu11(self.bn11(self.conv11(torch.cat([x8, self.upconv1(x10)], 1)))) x = self.relu12(self.bn12(self.conv12(x))) x = self.relu13(self.bn13(self.conv13(torch.cat([x6, self.upconv2(x)], 1)))) x = self.relu14(self.bn14(self.conv14(x))) x = self.relu15(self.bn15(self.conv15(torch.cat([x4, self.upconv3(x)], 1)))) x = self.relu16(self.bn16(self.conv16(x))) x = self.relu17(self.bn17(self.conv17(torch.cat([x2, self.upconv4(x)], 1)))) x = self.relu18(self.bn18(self.conv18(x))) x = self.conv19(x) return x ``` 在这个模型中,UNet有5个下采样层和5个上采样层。每个下采样层由两个卷积层和一个最大池化层组成,每个上采样层由一个转置卷积层和两个卷积层组成。 3. 定义损失函数和优化器 接下来,你需要定义损失函数和优化器。在图像分割任务中,我们通常使用交叉熵损失函数。优化器可以选择Adam、SGD等。 ```python import torch.optim as optim criterion = nn.BCEWithLogitsLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) ``` 4. 训练模型 最后,你可以开始训练模型了。你需要将数据集分成训练集和验证集,然后使用PyTorch的DataLoader加载数据集,并在每个epoch训练模型。 ```python from torch.utils.data import DataLoader train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=4, shuffle=True) for epoch in range(num_epochs): train_loss = 0 val_loss = 0 # 训练模型 model.train() for images, masks in train_loader: optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, masks) loss.backward() optimizer.step() train_loss += loss.item() # 验证模型 model.eval() with torch.no_grad(): for images, masks in val_loader: outputs = model(images) loss = criterion(outputs, masks) val_loss += loss.item() train_loss /= len(train_loader) val_loss /= len(val_loader) print('Epoch: {}, Train Loss: {}, Val Loss: {}'.format(epoch+1, train_loss, val_loss)) ``` 在训练过程中,你可以在每个epoch后计算训练集和验证集的损失,并输出训练结果。训练完成后,你可以保存模型并在测试集上进行测试。 这就是使用PyTorch实现UNet图像分割的基本流程。当然,你可以根据自己的需求调整模型结构、损失函数和优化器等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值