不会就坚持70天吧 数组中第k大的数

这篇博客介绍了三种寻找数组中第k大元素的方法:使用内置排序、优先队列和手写归并排序。所有方法的时间复杂度均为O(n*logn)。优先队列和手写堆排序在空间复杂度上优于内置排序,分别为O(n)和O(1)。
摘要由CSDN通过智能技术生成
调用数组排序的Api
按升序排列,取倒数第k个元素。
时间复杂度:O(n*logn)

class Solution {
    public int findKthLargest(int[] nums, int k) {
        Arrays.sort(nums);
        return nums[nums.length - k];

    }
}

作者:fen-zi-yun-he
链接:https://leetcode.cn/problems/xx4gT2/solution/-by-fen-zi-yun-he-4qjy/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。





使用优先队列PriorityQueue
PriorityQueue默认是升序排列,所以如果PriorityQueue中存放的数超过k个,就移除这堆头最小元素。
最后剩下的k个元素中的第一个元素,即为所求。
时间复杂度:O(n*logn),空间复杂度:O(n)


class Solution {
    public int findKthLargest(int[] nums, int k) {
        PriorityQueue<Integer> pq = new PriorityQueue<>();
        for(int i = 0; i < nums.length; i ++) {
            pq.offer(nums[i]);
            if(pq.size() > k) {
                //如果堆存放数量超过k,移除堆头最小元素
                pq.poll();
            }
        }
        return pq.poll();
    }
}

作者:fen-zi-yun-he
链接:https://leetcode.cn/problems/xx4gT2/solution/-by-fen-zi-yun-he-4qjy/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。



手写归并排序
时间复杂度:O(n*logn),空间复杂度:O(n)

class Solution {
    public int findKthLargest(int[] nums, int k) {
       nums = queueSort(nums, 0, nums.length - 1);
       return nums[nums.length - k];
    }

    private int[] queueSort(int[] nums, int left, int right) {
        if(left == right) {
            // 这里不是返回nums,而是返回一个长度为1的新数组
            return new int[]{nums[left]};
        }
        int mid = left + (right - left >> 1);
        int[] leftArr = queueSort(nums, left, mid);
        int[] rightArr = queueSort(nums, mid + 1, right);
        return merge(leftArr, rightArr);
    }

    private int[] merge(int[] left, int[] right) {
        int len1 = left.length, len2 = right.length;
        int[] tmp = new int[len1 + len2];
        int i = 0, j = 0;
        int idx = 0;
        while(i < len1 && j < len2) {
            if(left[i] < right[j]) {
                tmp[idx ++] = left[i ++];
            } else {
                tmp[idx ++] = right[j ++];
            }
        }
        while(i < len1) {
            tmp[idx ++] = left[i ++];
        }
        while(j < len2) {
            tmp[idx ++] = right[j ++];
        }
        return tmp;
    }
}

作者:fen-zi-yun-he
链接:https://leetcode.cn/problems/xx4gT2/solution/-by-fen-zi-yun-he-4qjy/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。




手写堆排序
时间复杂度:O(n*logn),空间复杂度:O(1)

class Solution {
    public int findKthLargest(int[] nums, int k) {
        for(int i = 0; i < nums.length; i ++) {
            heapInsert(nums, i);
        }
        int size = nums.length;
        if(k == 1) {
            return nums[0];
        } else {
            for(int i = 0; i < k - 1; i ++) {
                swap(nums, 0, -- size);
                heapify(nums, 0, size);
            }
            return nums[0];
        }
    }

    private void heapInsert(int[] nums, int index) {
        while(nums[index] > nums[(index - 1) / 2]) {
            swap(nums, index, (index - 1) / 2);
            index = (index - 1) / 2;
        }
    }

    private void heapify(int[] nums, int index, int size) {
        int largest = 2 * index + 1;
        // 这里不应该写成 index < size
        while(largest < size) {
            largest = largest + 1 < size && nums[largest + 1] > nums[largest] ? largest + 1 : largest;
            largest = nums[index] > nums[largest] ? index : largest;
            if(largest == index) {
                break;
            }
            swap(nums, index, largest);
            index = largest;
            largest = 2 * index + 1;
        }
    }

    private void swap(int[] nums, int i, int j) {
        int tmp = nums[i];
        nums[i] = nums[j];
        nums[j] = tmp;
    }
}

作者:fen-zi-yun-he
链接:https://leetcode.cn/problems/xx4gT2/solution/-by-fen-zi-yun-he-4qjy/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值