调用数组排序的Api
按升序排列,取倒数第k个元素。
时间复杂度:O(n*logn)
class Solution {
public int findKthLargest(int[] nums, int k) {
Arrays.sort(nums);
return nums[nums.length - k];
}
}
作者:fen-zi-yun-he
链接:https://leetcode.cn/problems/xx4gT2/solution/-by-fen-zi-yun-he-4qjy/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
使用优先队列PriorityQueue
PriorityQueue默认是升序排列,所以如果PriorityQueue中存放的数超过k个,就移除这堆头最小元素。
最后剩下的k个元素中的第一个元素,即为所求。
时间复杂度:O(n*logn),空间复杂度:O(n)
class Solution {
public int findKthLargest(int[] nums, int k) {
PriorityQueue<Integer> pq = new PriorityQueue<>();
for(int i = 0; i < nums.length; i ++) {
pq.offer(nums[i]);
if(pq.size() > k) {
//如果堆存放数量超过k,移除堆头最小元素
pq.poll();
}
}
return pq.poll();
}
}
作者:fen-zi-yun-he
链接:https://leetcode.cn/problems/xx4gT2/solution/-by-fen-zi-yun-he-4qjy/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
手写归并排序
时间复杂度:O(n*logn),空间复杂度:O(n)
class Solution {
public int findKthLargest(int[] nums, int k) {
nums = queueSort(nums, 0, nums.length - 1);
return nums[nums.length - k];
}
private int[] queueSort(int[] nums, int left, int right) {
if(left == right) {
// 这里不是返回nums,而是返回一个长度为1的新数组
return new int[]{nums[left]};
}
int mid = left + (right - left >> 1);
int[] leftArr = queueSort(nums, left, mid);
int[] rightArr = queueSort(nums, mid + 1, right);
return merge(leftArr, rightArr);
}
private int[] merge(int[] left, int[] right) {
int len1 = left.length, len2 = right.length;
int[] tmp = new int[len1 + len2];
int i = 0, j = 0;
int idx = 0;
while(i < len1 && j < len2) {
if(left[i] < right[j]) {
tmp[idx ++] = left[i ++];
} else {
tmp[idx ++] = right[j ++];
}
}
while(i < len1) {
tmp[idx ++] = left[i ++];
}
while(j < len2) {
tmp[idx ++] = right[j ++];
}
return tmp;
}
}
作者:fen-zi-yun-he
链接:https://leetcode.cn/problems/xx4gT2/solution/-by-fen-zi-yun-he-4qjy/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
手写堆排序
时间复杂度:O(n*logn),空间复杂度:O(1)
class Solution {
public int findKthLargest(int[] nums, int k) {
for(int i = 0; i < nums.length; i ++) {
heapInsert(nums, i);
}
int size = nums.length;
if(k == 1) {
return nums[0];
} else {
for(int i = 0; i < k - 1; i ++) {
swap(nums, 0, -- size);
heapify(nums, 0, size);
}
return nums[0];
}
}
private void heapInsert(int[] nums, int index) {
while(nums[index] > nums[(index - 1) / 2]) {
swap(nums, index, (index - 1) / 2);
index = (index - 1) / 2;
}
}
private void heapify(int[] nums, int index, int size) {
int largest = 2 * index + 1;
// 这里不应该写成 index < size
while(largest < size) {
largest = largest + 1 < size && nums[largest + 1] > nums[largest] ? largest + 1 : largest;
largest = nums[index] > nums[largest] ? index : largest;
if(largest == index) {
break;
}
swap(nums, index, largest);
index = largest;
largest = 2 * index + 1;
}
}
private void swap(int[] nums, int i, int j) {
int tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
}
作者:fen-zi-yun-he
链接:https://leetcode.cn/problems/xx4gT2/solution/-by-fen-zi-yun-he-4qjy/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
不会就坚持70天吧 数组中第k大的数
最新推荐文章于 2024-11-08 23:27:36 发布
这篇博客介绍了三种寻找数组中第k大元素的方法:使用内置排序、优先队列和手写归并排序。所有方法的时间复杂度均为O(n*logn)。优先队列和手写堆排序在空间复杂度上优于内置排序,分别为O(n)和O(1)。
摘要由CSDN通过智能技术生成