一、背景
在现网环境,一些使用Redis集群的业务随着业务量的上涨,往往需要进行节点扩容操作。
之前有了解到运维同学对一些节点数比较大的Redis集群进行扩容操作后,业务侧反映集群性能下降,具体表现在访问时延增长明显。
某些业务对Redis集群访问时延比较敏感,例如现网环境对模型实时读取,或者一些业务依赖读取Redis集群的同步流程,会影响业务的实时流程时延。业务侧可能无法接受。
为了找到这个问题的根因,我们对某一次的Redis集群迁移操作后的集群性能下降问题进行排查。
1.1 问题描述
这一次具体的Redis集群问题的场景是:某一个Redis集群进行过扩容操作。业务侧使用Hiredis-vip进行Redis集群访问,进行MGET操作。
业务侧感知到访问Redis集群的时延变高。
1.2 现网环境说明
- 目前现网环境部署的Redis版本多数是3.x或者4.x版本;
- 业务访问Redis集群的客户端品类繁多,较多的使用Jedis。本次问题排查的业务使用客户端Hiredis-vip进行访问;
- Redis集群的节点数比较大,规模是100+;
- 集群之前存在扩容操作。
1.3 观察现象
因为时延变高,我们从几个方面进行排查:
- 带宽是否打满;
- CPU是否占用过高;
- OPS是否很高;
通过简单的监控排查,带宽负载不高。但是发现CPU表现异常:
1.3.1 对比OPS和CPU负载
观察业务反馈使用的MGET和CPU负载,我们找到了对应的监控曲线。
从时间上分析,MGET和CPU负载高并没有直接关联。业务侧反馈的是MGET的时延普遍增高。此处看到MGET的OPS和CPU负载是错峰的。
此处可以暂时确定业务请求和CPU负载暂时没有直接关系,但是从曲线上可以看出:在同一个时间轴上,业务请求和cpu负载存在错峰的情况,两者间应该有间接关系。
1.3.2 对比Cluster指令OPS和CPU负载
由于之前有运维侧同事有反馈集群进行过扩容操作,必然存在slot的迁移。
考虑到业务的客户端一般都会使用缓存存放Redis集群的slot拓扑信息,因此怀疑Cluster指令会和CPU负载存在一定联系。
我们找到了当中确实有一些联系:
此处可以明显看到:某个实例在执行Cluster指令的时候,CPU的使用会明显上涨。
根据上述现象,大致可以进行一个简单的聚焦:
- 业务侧执行MGET,因为一些原因执行了Cluster指令;
- Cluster指令因为一些原因导致CPU占用较高影响其他操作;
- 怀疑Cluster指令是性能瓶颈。
同时,引申几个需要关注的问题:
为什么会有较多的Cluster指令被执行?
为什么Cluster指令执行的时候CPU资源比较高?
为什么节点规模大的集群迁移slot操作容易“中招”?
二、问题排查
2.1 Redis热点排查
我们对一台现场出现了CPU负载高的Redis实例使用perf top进行简单的分析:
从上图可以看出来,函数(
ClusterReplyMultiBulkSlots)占用的CPU资源高达 51.84%,存在异常。
2.1.1 ClusterReplyMultiBulkSlots实现原理
我们对
clusterReplyMultiBulkSlots函数进行分析:
void clusterReplyMultiBulkSlots(client *c) {
/* Format: 1) 1) start slot
* 2) end slot
* 3) 1) master IP
* 2) master port
* 3) node ID
* 4) 1) replica IP
* 2) replica port
* 3) node ID
* ... continued until done
*/
int num_masters = 0;
void *slot_replylen = addDeferredMultiBulkLength(c);
dictEntry *de;
dictIterator *di = dictGetSafeIterator(server.cluster->nodes);
while((de = dictNext(di)) != NULL) {
/*注意:此处是对当前Redis节点记录的集群所有主节点都进行了遍历*/
clusterNode *node = dictGetVal(de);
int j = 0, start = -1;
/* Skip slaves (that are iterated when producing the output of their
* master) and masters not serving any slot. */
/*跳过备节点。备节点的信息会从主节点侧获取。*/
if (!nodeIsMaster(node) || n