③.解析数据
xpath css re json bs4(过时了)
json 在python语言当中 字典类型数据 {键1:值1, 键2:值2, 键3:值3}
④.保存数据
导入模块
import time # 时间模块
import json # json包
import requests # 网络请求库 第三方 pip
import pandas as pd # 数据处理 第三库 pip
- 目标网址
https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5&callback=jQuery35106097998260028255_1617971061475&_=1617971061476
url = ‘https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5&_=%d’%int(time.time()*1000)
- 模拟浏览器发送请求,获取响应
html = requests.get(url)
- 解析网页,提取数据
-
正则
-
xpath
-
bs4
json类型转换
data = json.loads(html.json()[‘data’])
china_data = data[‘areaTree’][0][‘children’]
data_set = []
for i in china_data:
data_dict = {}
地区名称
data_dict[‘province’] = i[‘name’]
疫情数据
新增确诊
data_dict[‘nowConfirm’] = i[‘total’][‘nowConfirm’]
data_dict[‘confirm’] = i[‘total’][‘confirm’]
data_dict[‘dead’] = i[‘total’][‘dead’]
data_dict[‘heal’] = i[‘total’][‘heal’]
data_dict[‘deadRate’] = i[‘total’][‘deadRate’]
data_dict[‘healRate’] = i[‘total’][‘healRate’]
data_set.append(data_dict)
df = pd.DataFrame(data_set)
df
- 保存数据
df.to_csv(r’data.csv’)
=========================================================================
-
matplotlib
-
pyecharts # pip install pyecharts
from pyecharts import options as opts
from pyecharts.charts import Bar,Line,Pie,Map,Grid
df2 = df.sort_values(by=[‘nowConfirm’],ascending=False)[:9]
df2
[list(i) for i in zip(df2[‘province’].values.tolist(),df2[‘nowConfirm’].values.tolist())]
pie = (
Pie()
.add(
“”,
[list(i) for i in zip(df2[‘province’].values.tolist(),df2[‘nowConfirm’].values.tolist())],
radius = [“10%”,“30%”]
)
.set_global_opts(
legend_opts=opts.LegendOpts(orient=“vertical”, pos_top=“70%”, pos_left=“70%”),
)
.set_series_opts(label_opts=opts.LabelOpts(formatter=“{b}: {c}”))
)
pie.render_notebook()
死亡率与治愈率
line = (
Line()
.add_xaxis(list(df[‘province’].values))
.add_yaxis(“治愈率”, df[‘healRate’].values.tolist())
.add_yaxis(“死亡率”, df[‘deadRate’].values.tolist())
.set_global_opts(
title_opts=opts.TitleOpts(title=“死亡率与治愈率”),
)
)
line.render_notebook()
各地确诊与死亡人数情况
bar = (
Bar()
.add_xaxis(list(df[‘province’].values)[:6])
.add_yaxis(“死亡”, df[‘dead’].values.tolist()[:6])
.add_yaxis(“治愈”, df[‘heal’].values.tolist()[:6])
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!
dnimg.cn/img_convert/252731a671c1fb70aad5355a2c5eeff0.png)
五、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!