【最优传输论文十】Multi-source Domain Adaptation via Weighted Joint Distributions Optimal Transport(2020)

本文提出加权联合分布最优传输(WJDOT)方法,利用源分布多样性,通过优化Wasserstein距离实现源分布与目标分布的对齐和源分布的重新加权,以适应域移位问题。WJDOT通过学习权重和分类函数,根据源与目标的相似性分配质量,提供域相关性和可解释性。通过泛化界分析和实验证明了其在多源域适应中的有效性。
摘要由CSDN通过智能技术生成

摘要

本文通过根据手头的目标任务调整源分布的权重来利用源分布的多样性,该方法称为加权联合分布最优传输(WJDOT),旨在同时找到基于最优传输的源分布和目标分布之间的对齐以及源分布的重新加权。

1.介绍

在许多实际应用中,例如当背景、位置、照明或姿势发生变化时,以及在不同说话者或录音条件下的语音识别中,新数据可能会出现分布变化(域移位),从而降低算法的性能。

针对以上问题,本文采用源分布的多样性来寻找与目标分布距离最小的源联合分布的凸组合,在推导出涉及该距离的目标的新泛化界后,提出优化Wasserstein距离,该距离定义在特征/标签积空间上,在目标域和标记源的加权和之间。本文的方法的一个独特之处在于权重是与分类函数同时学习的,这允许基于源与目标的相似性来分配质量,无论是在特征中还是在输出空间中。本文的方法估计了提供域相关性和可解释性度量的权重,并将提出的方法称为加权联合分布最优传输(WJDOT)。

本文相关符号:

S为源域的个数,其中特征和标签都是可用的。假设有一个可微嵌入函数g: X→G,其中g是嵌入空间。本文所有的输入分布都在这个嵌入空间中。设ps为源域s的真实分布,pT为目标域的真实分布,两者都支持积空间G × Y,其中Y为标签空间。源域中经验源分布:\hat{p}_{s}=\frac{1}{N_{s}}\sum _{N_{s}}^{i=1}\delta _{g(x_{i}^{s}),y_{i}^{s}}。目标域,经验目标边际分布\hat{u}=\frac{1}{N}\sum _{N}^{i=1}\delta _{g(x^{i})}。损失函数L和联合分布p,函数f的期望损失定义为\varepsilon _{p}(f)=E_{(x,y)\sim p}\left [ L(y,f(x)) \right ]

2.联合分布最优传输回顾

JDOT使用代理联合经验分布,其中标签被分类器的预测f: G→Y取代,即

并提出以下优化问题:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值