【最优传输论文二十四】2022 trans Few-Shot Domain Adaptation via Mixup Optimal Transport

1. motivation

无监督域自适应是指在没有任何标记样本的情况下,通过从有足够标记样本的源域转移知识来学习目标域的分类模型。源域和目标域通常共享相同的标签空间,但具有不同的数据分布。在本文中,考虑了一个更困难但尚未充分探索的问题,称为“少样本域自适应”,其中分类器应该在只有少量源域样本的情况下很好地泛化到目标域。在此问题中,我们通过混合最优传输模型来重新定义源样本和目标样本之间的联系。将混合机制集成到最优传输中,通过同时学习跨域对齐矩阵和域不变分类器来增强源分布并对齐两个概率分布,从而实现少样本域自适应。此外,利用所有奇异特征向量,利用谱收缩正则化提高混合最优传输模型的可转移性和可判别性。在多个领域自适应任务上进行的实验表明,与现有方法相比,本文提出的模型能够有效地处理少量的领域自适应问题。

2. introduce

领域自适应中的一个问题,即源领域的类别分布可能是不均衡或长尾分布的。实际应用中,某些特定类别的样本可能很难收集和标注,因此这些类别可能只有有限数量的可用样本。例如,糖尿病视网膜病变数据集中的每个图像都是在临床检查中拍摄的,并由多位眼科医生进行注释。因此,数据集中的样本分布并不能保证是均匀的。一些研究已经开始探索少样本有监督领域自适应问题,但对于无监督领域自适应中的少样本设置仍然有限的探索。无监督领域自适应中的少样本问题是问题的一个更困难的变体,目标领域中的样本没有任何标签信息,源领域中的样本在少样本设置下有良好的标签。源领域中的一些类别可能只包含几个实例用于训练,可以称为少样本类别,而其他类别则是具有足够样本的正常集类别。如果在训练过程中直接使用少样本类别和正常集类别的平均错误,可能会导致分类器偏向于大多数类别,并在少数类别上具有更高的分类错误率。

在这项工作中,本文解决了少样本无监督领域自适应的问题,即在训练过程中只有少数源领域样本可用。与原始的领域自适应设置相比,这种情况需要同时处理领域转移和分布不均衡的问题。解决这个问题的关键是避免从少样本源领域学习的分类器对多数类别产生偏见,因为这可能导致目标领域性能下降。所提出的方法的示意图如图1所示。为了缓解这种情况,在少样本领域自适应中利用最优传输来学习耦合矩阵,并对两个领域的表示进行对齐。同时,通过使用mixup对训练集进行增强,这是一种简单而稳定的机制,可以提高模型的泛化能力。mixup传输映射适用于少样本类别和正常集类别,并且新源领域的分布可以受到一定界限的约束。计算耦合矩阵的复杂度和学习分类器进行决策的风险与非mixup情况相同。此外,模型采用了基于奇异值分解的正则化方案,它可以将奇异值的信息从源领域传递到目标领域,提高所提出模型的可迁移性和可区分性。本文进行了几个分类任务的数值实验,证明了所提方法在性能上优于现有方法。

3. 提出的算法

A. Preliminary and Motivation

设x s∈XS表示源域的样本,对应标签ys∈YC, x t∈XT表示目标域的样本,标签未知。通常,源域和目标域的数据来自不同的分布,但共享一致的标签信息YC。领域自适应问题的目标是在通常由标记的源样本和未标记的目标样本组成的训练集上学习分类器,然后利用从源领域学习到的信息将其应用到目标领域。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值