两个整数做除法,有时会产生循环小数,其循环部分称为:循环节。
比如,11/13=6=>0.846153846153… 其循环节为[846153] 共有6位。
因此可得每位小数均为上一次整除求商的余数再乘10整除的结果,因而余数相同乘10再除以除数就会出现重复的商和余数,此余数也是出现过的,故依次循环,出现循环的小数位。
依此,求解循环节则可以通过寻找重复出现的余数位来实现。
就循环小数而言,各循环节的首位必然和小数首位相同,因而对应当次运算的余数位也必然等同于第一个余数,则循环节长度即等于第一个重复位之前的长度。
然而,应该加以注意的是类似7/18=0.388888888的情况,此种情况下循环节长度必定为1,然而重复数8并非与小数首位相同,此时循环节长度并不等于第一个重复位之前的长度。
若其中某一次运算整除了自然而然的它是有限小数,也就没有循环节这一说了。
可以依照上述情况简单的分为两类,即if中循环节长度find是否和begin相等两种情况
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
int f(int a, int b){
a=a%b;
vector<int> v;
while(1){
v.push_back(a);
a=a*10%b;
if(!a)