一、引言
在当今数字化时代,信息安全成为了至关重要的议题。非对称加密算法作为保障信息安全的核心技术之一,在数据加密、数字签名、身份验证等领域发挥着不可或缺的作用。其中,RSA 算法以其可靠性、安全性和广泛的适用性,成为了非对称加密领域的经典代表。本文将深入探讨 RSA 算法的原理、应用场景,并通过 C# 和 Python 语言的实例代码展示其加解密功能的实现。
二、RSA 算法原理
(一)数学基础
- 质数与互质数
- 质数是指在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的数。例如,2、3、5、7、11 等都是质数。在 RSA 算法中,质数的选取是关键步骤之一。互质数是指两个或多个整数的最大公约数为 1 的数。例如,8 和 9 是互质数,因为它们的最大公约数是 1。在 RSA 算法中,需要选取两个大质数,并且这两个质数通常是互质的。
- 欧拉函数
- 对于正整数 n,欧拉函数 φ(n) 表示小于等于 n 且与 n 互质的正整数的个数。例如,对于质数 p,φ(p) = p - 1,因为质数 p 除了 1 和它本身外,与其他小于 p 的正整数都互质。如果 n = pq(p 和