LightGBM学习

LightGBM 是近年来在数据科学和机器学习领域备受瞩目的梯度提升框架,凭借高效的内存使用和极快的训练速度,在 Kaggle 竞赛和工业落地场景中大放异彩。接下来我将从它的技术原理、核心优势出发,结合丰富的示例代码,为你详细介绍这个强大的工具。

一、LightGBM 概述

LightGBM(Light Gradient Boosting Machine)由微软开发并开源,是基于梯度提升决策树(GBDT)算法的高效实现。与传统的 GBDT 框架(如 XGBoost)相比,LightGBM 通过一系列创新技术,大幅提升了模型训练的效率和性能。它支持大规模数据集,能够处理高维特征,并且在内存占用和计算速度上表现出色,非常适合于实时性要求高、数据规模大的场景。

二、LightGBM 核心技术原理

  1. 直方图算法(Histogram Algorithm)
    LightGBM 采用直方图算法来加速决策树的构建。传统的决策树在寻找最佳分裂点时,需要遍历所有数据点,计算量巨大。而 LightGBM 将连续的特征值离散化为 k 个整数,并构造宽度为 k 的直方图。在计算信息增益时,只需遍历直方图即可,大大减少了计算量。

    例如,对于一个包含

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

亿只小灿灿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值