一、引言
在数字化时代,我们每天都会接触到大量的图像和文档资料,如扫描版书籍、发票、身份证、表格数据等。这些资料中的文字信息如果能够自动识别并转换为可编辑的文本格式,将极大地提高工作效率。光学字符识别(Optical Character Recognition, OCR)技术正是实现这一目标的关键工具。
Python 作为一种功能强大且易于学习的编程语言,拥有丰富的 OCR 库和工具,为开发者提供了便捷的文字识别解决方案。本文将深入探讨 Python 中 OCR 技术的实现,涵盖从基础的文字提取到高级的表格识别、票据单据识别和证件识别等功能,并提供详细的代码示例和应用场景分析。
二、OCR 技术基础
2.1 OCR 工作原理
OCR 技术的核心是通过图像处理和机器学习算法将图像中的文字转换为计算机可识别的文本。其基本工作流程包括:
- 图像预处理:对输入图像进行灰度转换、降噪、二值化、倾斜校正等操作,提高文字的清晰度。
- 文字定位与分割:检测图像中的文字区域,并将其分割为单个字符或单词。
- 特征提取:提取每个字符的特征,如笔画、轮廓、结构等。
- 分类识别:将提取的特征与预训练