AVL 树的初步认识与基本操作

历史

AVL 树是一种自平衡二叉搜索树,由托尔·哈斯特罗姆在 1960 年提出并在 1962 年发表。它的名字来源于发明者的名字:Adelson-Velsky 和 Landis,他们是苏联数学家,于 1962 年发表了一篇论文,详细介绍了 AVL 树的概念和性质。

在二叉搜索树中,如果插入的元素按照特定的顺序排列,可能会导致树变得非常不平衡,从而降低搜索、插入和删除的效率。为了解决这个问题,AVL 树通过在每个节点中维护一个平衡因子来确保树的平衡。平衡因子是左子树的高度减去右子树的高度。如果平衡因子的绝对值大于等于 2,则通过旋转操作来重新平衡树。

AVL 树是用于存储有序数据的一种重要数据结构,它是二叉搜索树的一种改进和扩展。它不仅能够提高搜索、插入和删除操作的效率,而且还能够确保树的深度始终保持在 O(log n) 的水平。随着计算机技术的不断发展,AVL 树已经成为了许多高效算法和系统中必不可少的一种基础数据结构。

什么叫平衡二叉搜索树?什么叫不平衡二叉搜索树?

个人理解:

答:当根节点两边左右孩子都有则为平衡二叉搜索树,如果有一边没有孩子就是不平衡,就像一个人如果缺胳膊少腿肯定就会看起来不平衡。

温馨提示:对于二叉树还是不太认识的,作者推荐:二叉搜索树的初步认识_加瓦不加班的博客-CSDN博客

前面介绍过,如果一棵二叉搜索树长的不平衡,那么查询的效率会受到影响,如下图

比如,我们如果要从上述二叉树,根节点是3,它虽然有左孩子,你有没有发现它右孩子没有,那岂不就是缺胳膊少腿?所以这个就是不平衡二叉搜索树,

那么为什么一棵二叉搜索树长的不平衡会查询的效率会受到影响?

答:比如,你现在要搜索节点为1的情况,你要从根节点开始,从根往左,也就是搜索到最低层节点才能找到,也就是要走2步,如果,此时我将2做为根节点,那么从2开始查询,只需要一步到位查询到1.是不是相对平衡的二叉树搜索起来更加高效?

通过旋转可以让树重新变得平衡,并且不会改变二叉搜索树的性质(即左边仍然小,右边仍然大)

什么叫自平衡二叉搜索树?

就是当二叉树出现不平衡时,我们二叉树能够检测不平衡,通过“旋转”,也就是自动将根节点调换,换成能够变成平衡二叉树的情况。

/**

  • AVL 树

  • <li>二叉搜索树在插入和删除时,节点可能失衡</li>

  • <li>如果在插入和删除时通过旋转, 始终让二叉搜索树保持平衡, 称为自平衡的二叉搜索树</li>

  • <li>AVL 是自平衡二叉搜索树的实现之一</li>

  • </ul> */

如何判断失衡?

如果一个节点的左右孩子,高度差超过 1,则此节点失衡,才需要旋转

处理高度

如何得到节点高度?一种方式之前做过的一道题目:E05. 求二叉树的最大深度(高度)二叉树--二叉树最大深度_加瓦不加班的博客-CSDN博客,但由于求高度是一个非常频繁的操作,因此将高度作为节点的一个属性,将来新增或删除时及时更新,默认为 1(按力扣说法)

static class AVLNode {
    int height = 1;
    int key;
    Object value;
    AVLNode left;
    AVLNode right;
    // ...
}

求高度代码:

这里加入了 height 函数方便求节点为 null 时的高度

private int height(AVLNode node) {
    return node == null ? 0 : node.height;
}

更新高度代码

将来新增、删除、旋转时,高度都可能发生变化,需要更新。下面是更新高度的代码

在这里我们之前其实已经学习了如何获取节点的高度----二叉树最大深度-力扣104二叉树--二叉树最大深度_加瓦不加班的博客-CSDN博客

/*
   思路:
   1. 得到左子树深度, 得到右子树深度, 二者最大者加一, 就是本节点深度
   2. 因为需要先得到左右子树深度, 很显然是后序遍历典型应用
   3. 关于深度的定义:从根出发, 离根最远的节点的总边数,这个总边数指的就是下面的线段数
       注意: 力扣里的深度定义要多一,在你现在看来下面的深度确实是1 2 0  但是力扣官方觉得:在你看来的基础上+1才是正确的深度

 你的视角:      深度:1         深度:2         深度:0
 力扣的视角:      深度:2         深度:3         深度:1
                   1            1            1
                  / \          / \
                 2   3        2   3
                                   \
                                    4
*/
   public int maxDepth(TreeNode node) {
       if (node == null) {
           return 0; // 非力扣题目改为返回 -1
       }
       int d1 = maxDepth(node.left);
       int d2 = maxDepth(node.right);
       return Integer.max(d1, d2) + 1;
   }

举例说明:

当二叉树只有根节点时,高度是1:

当二叉树有根节点跟一边的子节点时,根节点高度是2 子节点是1:(实际上是想告诉你的是,任何一个节点在新增以后的高度都是要变化的):

但是有一种情况是不会变化的,那就是当在同一层加节点,高度不变:

private void updateHeight(AVLNode node) {
    node.height = Integer.max(height(node.left), height(node.right)) + 1;
}

何时触发失衡判断?

定义平衡因子(balance factor)如下

当平衡因子

  • bf = 0,1,-1 时,表示左右平衡

为什么会有0,1,-1的情况?

举例说明:

对于0这个情况:

对于4节点为参考,它的左右孩子高度相减就是0

对于1这个情况:

对于4根节点为参考,它的左孩子高度为2,右孩子高度为1,而我们相减的顺序是(左-右) ,相减就是1

对于-1这个情况:

对于2根节点为参考,它的左孩子高度为1,右孩子高度为2,而我们相减的顺序是(左-右) ,相减就是-1

  • bf > 1 时,表示左边太高

  • bf < -1 时,表示右边太高

对应代码

private int bf(AVLNode node) {
    return height(node.left) - height(node.right);
}

当插入新节点,或删除节点时,引起高度变化时,例如

目前此树平衡,当再插入一个 4 时,节点们的高度都产生了相应的变化,8 节点失衡了

在比如说,下面这棵树一开始也是平衡的

当删除节点 8 时,节点们的高度都产生了相应的变化,6 节点失衡了

失衡的四种情况

LL

  • 失衡节点(图中 8 红色)的 bf > 1,即左边更高

  • 失衡节点的左孩子(图中 6)的 bf >= 0 ,即图中 6的左孩子这边也是左边更高或等高

LR

  • 失衡节点(图中 8)的 bf > 1,即左边更高

  • 失衡节点的左孩子(图中 3 红色)的 bf < 0 ,即左孩子(图中 3 红色)这边是右边孩子更高

对称的还有两种情况

接下来的两个情况和上面两种情况是对称的:

RL

  • 失衡节点(图中 3)的 bf <-1,即右边更高

  • 失衡节点的右孩子(图中 6 红色)的 bf > 0,即右孩子(图中 6 红色)这边左边更高

RR

  • 失衡节点(图中 3)的 bf <-1,即右边更高

  • 失衡节点的右孩子(图中 5 红色)的 bf <= 0,即右孩子(图中 5 红色)这边右边更高或等高

解决失衡

失衡可以通过树的旋转解决。什么是树的旋转呢?它是在不干扰元素顺序的情况下更改结构,通常用来让树的高度变得平衡。

观察下面一棵二叉搜索树,可以看到,旋转后,并未改变树的左小右大特性,但根、父、孩子节点都发生了变化

      4                                          2
     / \             4 right                  / \
    2   5      -------------------->    1   4
   / \         <--------------------      / \
  1   3              2 left               3   5

右旋

  • 红色节点,旧根(失衡节点)

  • 黄色节点,旧根的左孩子,将来作为新根,旧根是它右孩子

  • 绿色节点,新根的右孩子,将来要换爹作为旧根的左孩子

旋转后

代码

//参数:要旋转的节点 也就是失衡节点 
private AVLNode rightRotate(AVLNode red) {
    //黄色节点,旧根的左孩子
    AVLNode yellow = red.left;
    //绿色节点:当黄色节点有右孩子不是null,则要执行下面的red.left = green;  如果黄色节点有右孩子是null,就不需要执行red.left = green; 
    //但是如果黄色节点有右孩子是null 执行red.left = green; 指向Null也没事
    AVLNode green = yellow.right;
    yellow.right = red;
    red.left = green;
    //做完失衡调整以后 记得要做更新高度操作 更新高度的操作不能改变
    updateHeight(red);
    updateHeight(yellow);
    return yellow;
}

左旋

旋转前

  • 红色节点,旧根(失衡节点)

  • 黄色节点,旧根的右孩子,将来作为新根,旧根是它左孩子

  • 绿色节点,新根的左孩子,将来要换爹作为旧根的右孩子

旋转后

代码 :与右旋的代码相对

private AVLNode leftRotate(AVLNode red) {
    AVLNode yellow = red.right;
    AVLNode green = yellow.left;
    yellow.left = red;
    red.right = green;
    //做完失衡调整以后 记得要做更新高度操作 更新高度的操作不能改变
    updateHeight(yellow);
    updateHeight(red);
    return yellow;
}

左右旋

指先左旋左子树,再右旋根节点(失衡),这时一次旋转并不能解决失衡

左子树旋转后

根右旋前

根右旋后

代码

private AVLNode leftRightRotate(AVLNode root) {
    root.left = leftRotate(root.left);
    return rightRotate(root);
}

右左旋

指先右旋右子树,再左旋根节点(失衡)

右子树右旋后

 根左旋前

根左旋后

代码

private AVLNode rightLeftRotate(AVLNode root) {
    root.right = rightRotate(root.right);
    return leftRotate(root);
}

你发现有这四种不平衡情况,其实基本操作就是左旋和右旋这两种。

判断及调整平衡代码

//检查节点是否失衡,重新平衡代码
private AVLNode balance(AVLNode node) {
    if (node == null) {
        return null;
    }
    int bf = bf(node);
    
    if (bf > 1 && bf(node.left) >= 0) { //LL
        return rightRotate(node);
    } else if (bf > 1 && bf(node.left) < 0) { //LR
        return rightLeftRotate(node);
    } else if (bf < -1 && bf(node.right) > 0) { //RL
        return leftRightRotate(node);
    } else if (bf < -1 && bf(node.right) <= 0) {//RR
        return rightRotate(node);
    }
    return node;
}

以上四种旋转代码里,都需要更新高度,需要更新高度的节点只有红色、黄色,而绿色节点与其他无色节点高度是不变的

新增操作

AVLNode root;
public void put(int key, Object value) {
    root = doPut(root, key, value);
}
//传来的根节点
private AVLNode doPut(AVLNode node, int key, Object value) {
    //1.找到空位  创建新节点
    if (node == null) {
        return new AVLNode(key, value);
    }
    //2.Key已存在,则更新
    if (key == node.key) {
        node.value = value;
        return node;
    }
    if (key < node.key) {
        node.left = doPut(node.left, key, value);
    } else {
        node.right = doPut(node.right, key, value);
    }
    updateHeight(node);
    return balance(node);
}

删除操作

public void remove(int key) {
    root = doRemove(root, key);
}

//node:传入的根节点
private AVLNode doRemove(AVLNode node, int key) {
    // 1. node == null
    if (node == null) {
        return null;
    }
    // 2. 没找到 key
    if (key < node.key) {
        node.left = doRemove(node.left, key);
    } else if (node.key < key) {
        node.right = doRemove(node.right, key);
    } else {
        // 3. 找到 key  1) 没有孩子 2) 只有一个孩子 3) 有两个孩子
        if (node.left == null && node.right == null) { //1) 没有孩子
            return null;
        } else if (node.left == null) { //2) 只有一个孩子
            node = node.right;
        } else if (node.right == null) {//2) 只有一个孩子
            node = node.left;
        } else { //3) 有两个孩子
            AVLNode s = node.right; //初始是待删除的右子树  
            //当后继节点与待删除节点不是相邻的
            while (s.left != null) {
                s = s.left;
            }
            //找到后继节点:s
            s.right = doRemove(node.right, s.key);//如果后继节点也有孩子,要把后继节点的孩子处理好
            s.left = node.left;
            //后继节点代替待删除节点
            node = s;
        }
    }
    if (node == null) {
        return null;
    }
    // 4. 更新高度
    updateHeight(node);
    // 5. balance
    return balance(node);
}

完整代码备份

public class AVLTree {
    static class AVLNode {
        int height = 1;
        int key;
        Object value;
        AVLNode left;
        AVLNode right;

        public AVLNode(int key) {
            this.key = key;
        }

        public AVLNode(int key, Object value) {
            this.key = key;
            this.value = value;
        }

        public AVLNode(int key, Object value, AVLNode left, AVLNode right) {
            this.key = key;
            this.value = value;
            this.left = left;
            this.right = right;
        }
    }

    AVLNode root;

    private AVLNode leftRotate(AVLNode p) {
        AVLNode r = p.right;
        AVLNode b = r.left;
        r.left = p;
        p.right = b;
        //做完失衡调整以后 记得要做更新高度操作 更新高度的操作不能改变
        updateHeight(p);
        updateHeight(r);
        return r;
    }

    private void updateHeight(AVLNode node) {
        node.height = Integer.max(height(node.left), height(node.right)) + 1;
    }

    private AVLNode rightRotate(AVLNode r) {
        AVLNode a = r.left;
        AVLNode b = a.right;
        a.right = r;
        r.left = b;
        //做完失衡调整以后 记得要做更新高度操作  更新高度的操作不能改变
        updateHeight(r);
        updateHeight(a);
        return a;
    }

    private AVLNode leftRightRotate(AVLNode p) {
        AVLNode r = p.left;
        p.left = leftRotate(r);
        return rightRotate(p);
    }

    private AVLNode rightLeftRotate(AVLNode p) {
        AVLNode r = p.right;
        p.right = rightRotate(r);
        return leftRotate(p);
    }

    private int height(AVLNode node) {
        return node == null ? 0 : node.height;
    }



    public void remove(int key) {
        root = doRemove(root, key);
    }

    private AVLNode doRemove(AVLNode node, int key) {
        if (node == null) {
            return null;
        }
        if (key < node.key) {
            node.left = doRemove(node.left, key);
        } else if (node.key < key) {
            node.right = doRemove(node.right, key);
        } else {
            if (node.left == null) {
                node = node.right;
            } else if (node.right == null) {
                node = node.left;
            } else {
                AVLNode s = node.right;
                while (s.left != null) {
                    s = s.left;
                }
                s.right = doRemove(node.right, s.key);
                s.left = node.left;
                node = s;
            }
        }
        if (node == null) {
            return null;
        }
        updateHeight(node);
        return balance(node);
    }

    public void put(int key, Object value) {
        root = doPut(root, key, value);
    }

    private AVLNode doPut(AVLNode node, int key, Object value) {
        if (node == null) {
            return new AVLNode(key, value);
        }
        if (key == node.key) {
            node.value = value;
            return node;
        }
        if (key < node.key) {
            node.left = doPut(node.left, key, value);
        } else {
            node.right = doPut(node.right, key, value);
        }
        updateHeight(node);
        return balance(node);
    }

    private int bf(AVLNode node) {
        return height(node.left) - height(node.right);
    }

    private AVLNode balance(AVLNode node) {
        if (node == null) {
            return null;
        }
        int bf = bf(node);
        if (bf > 1 && bf(node.left) >= 0) {
            return rightRotate(node);
        } else if (bf > 1 && bf(node.left) < 0) {
            return rightLeftRotate(node);
        } else if (bf < -1 && bf(node.right) > 0) {
            return leftRightRotate(node);
        } else if (bf < -1 && bf(node.right) <= 0) {
            return rightRotate(node);
        }
        return node;
    }
}

小结

AVL树的优点:

  1. AVL树是一种自平衡树,保证了树的高度平衡,从而保证了树的查询和插入操作的时间复杂度均为O(logn)。

  2. 相比于一般二叉搜索树,AVL树对查询效率的提升更为显著,因为其左右子树高度的差值不会超过1,避免了二叉搜索树退化为链表的情况,使得整棵树的高度更低。

  3. AVL树的删除操作比较简单,只需要像插入一样旋转即可,在旋转过程中树的平衡性可以得到维护。

AVL树的缺点:

  1. AVL树每次插入或删除节点时需要进行旋转操作,这个操作比较耗时,因此在一些应用中不太适用。

  2. 在AVL树进行插入或删除操作时,为保持树的平衡需要不断进行旋转操作,在一些高并发环节和大数据量环境下,这可能会导致多余的写锁导致性能瓶颈。

  3. AVL树的旋转操作相对较多,因此在一些应用中可能会造成较大的空间浪费。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值