算法笔记(DFS求解简单迷宫问题)

(1)DFS遍历邻接矩阵:
#include<iostream>
using namespace std;
#define MAXV 100//最大节点数
int visited[MAXV];

typedef struct{
	char vex[MAXV];//顶点表
	int edge[MAXV][MAXV];//邻接矩阵表
	int Vnum;//节点数
	int Enum;//边数
}MGraph;//无向图邻接矩阵结构

void CreateMG(MGraph *MG){
	int i,j,k;
	char v;
	cout<<"请依次输入顶点数和边数:";
	cin>>MG->Vnum>>MG->Enum;
	cout<<"请依次输入顶点:";
	for(i=0;i<MG->Vnum;i++)
		cin>>MG->vex[i];
	for(i=0;i<MG->Vnum;i++)//初始化邻接矩阵
		for(j=0;j<MG->Vnum;j++)
			MG->edge[i][j]=0;
	cout<<"请输入每条边对应的两个顶点下标(i,j):\n";
	for(k=0;k<MG->Enum;k++){
		cin>>i>>j;
		MG->edge[i][j]=1;
		MG->edge[j][i]=1;
	}
}//创建无向图邻接矩阵

void DisplayMG(MGraph MG){
	int i,j;
	for(i=0;i<MG.Vnum;i++){
		for(j=0;j<MG.Vnum;j++)
			cout<<MG.edge[i][j]<<' ';
		cout<<'\n';
	}
}//邻接矩阵输出无向图

void DfsMG(MGraph *MG,int v){
	int w;
	cout<<v<<' ';//输出被访问顶点
	visited[v]=1;//将当前顶点设为已访问状态
	for(w=0;w<MG->Vnum;w++)
		if(MG->edge[v][w]==1&&visited[w]==0)
			DfsMG(MG,w);//查找顶点v的未访问的相邻点
}

int main(){
	MGraph g;
	CreateMG(&g);
	DisplayMG(g);
	cout<<"DFS遍历路径为:\n";
	DfsMG(&g,0);
}
(2)DFS遍历迷宫求解入口->出口路径:
#include<stdio.h>
#define MAX 10
int n=8;
char Maze[MAX][MAX]= {
	{'O','X','X','X','X','X','X','X'},
	{'O','O','O','O','O','X','X','X'},
	{'X','O','X','X','O','O','O','X'},
	{'X','O','X','X','O','X','X','O'},
	{'X','O','X','X','X','X','X','X'},
	{'X','O','X','X','O','O','O','X'},
	{'X','O','O','O','O','X','O','O'},
	{'X','X','X','X','X','X','X','O'}
};
int H[4]= {0,1,0,-1}; //水平偏移量
int V[4]= {-1,0,1,0}; //垂直偏移量


void DisplayPath() {
	for(int i=0; i<n; i++) {
		for(int j=0; j<n; j++)
			printf("%c",Maze[i][j]);
		printf("\n");
	}
}//输出一条迷宫路径


void Dfs(int x,int y) {
	if(x==n-1&&y==n-1) { //找到出口并结束遍历输出
		Maze[n-1][n-1]='?';
		DisplayPath();
		return;
	} else {
		for(int k=0; k<4; k++) {
			if(x>=0&&y>=0&&x<n&&y<n&&Maze[x][y]=='O') {
				Maze[x][y]='*';//标记走过的路径
				Dfs(x+V[k],y+H[k]);
				Maze[x][y]='O';
			}
		}
	}
}//从(x,y)点开始遍历迷宫


int main() {
	int x=0,y=0;//入口坐标
	printf("一条迷宫路径为:\n");
	Dfs(x,y);
}

DFS遍历邻接表实在太麻烦(报了一堆错),所以放弃了。

-------该算法摘自《算法设计与分析(第2版)》

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值