题解:定义long long类型变量,遍历一遍出结果
#include<stdio.h>
int main(){
int n;
scanf("%d",&n);
long long a[1001];
for(int i=0;i<n;i++)
scanf("%lld",&a[i]);
char s[n];
scanf(" %s",&s);
long long ans=0;
for(int i=0;i<n;i++){
if(s[i]=='F'){
if(a[i]/100>5)
ans+=a[i]/100;
else
ans+=5;
}else{
ans+=a[i];
}
}
printf("%lld",ans);
}
题解: 求两个最大乘积之和,优先使乘积最大,而不是和最大,将两个乘积其中之一最大,另一个最小就行。定义long long类型变量,遍历一遍出结果,每次循环乘积都取余一次,最后和取余一次,防止溢出。
#include<stdio.h>
int a[100000];
int b[100000];
long long yu=1000000007;
int main(){
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
for(int i=0;i<n;i++)
scanf("%d",&b[i]);
long long ans1=1,ans2=1;
for(int i=0;i<n;i++){
if(a[i]<b[i]){
ans1*=b[i];
ans2*=a[i];
}else{
ans1*=a[i];
ans2*=b[i];
}
ans1%=yu;
ans2%=yu;
}
printf("%lld",(ans1+ans2)%yu);
}
题解:定义long long类型变量,用贪心算法求解。优先使用高伤害技能攻击高血量敌人,为了最少法力值消耗,每次循环执行时,先判断敌人血量是否大于技能造成的伤害,每次计算三个敌人血量于技能伤害的倍数,取最小倍数,一次循环可以释放多次技能,提高算法效率。高伤害技能全释放过后,再执行一次循环,保证所有敌人血量清空。之所以从后往前遍历,是因为高伤害技能的伤害是递增的,倒序可以优先击败高血量敌人,节省法力值消耗。
#include<stdio.h>
long long mp;
long long a[100001];
int Min(int a,int b,int c){
return a>b?(b>c?c:b):(a>c?c:a);
}
int main(){
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%lld",&a[i]);
mp=0;
for(int i=n-3;i>=0;i--){
if(a[i]>=1&&a[i+1]>=2&&a[i+2]>=3){
int ratio=Min(a[i],a[i+1]/2,a[i+2]/3);
mp+=5*ratio;
a[i]-=ratio;
a[i+1]-=2*ratio;
a[i+2]-=3*ratio;
}
}
for(int i=0; i<n; i++)
mp+=a[i];
printf("%lld",mp);
}
好像用线段树模板可以AC,但是博主不会。二叉树之前学的不深,等寒假再学。