《菜菜的机器学习sklearn课堂》随机森林应用泛化误差调参实例

本文通过随机森林和决策树在乳腺癌数据集上的应用,探讨了模型调参的重要性。实验显示随机森林在该数据集上表现优于单棵决策树。通过交叉验证和学习曲线,讨论了如何选择合适的`n_estimators`,并提出了根据数据规模来试探模型深度的策略。同时,引入了网格搜索方法来进一步优化模型参数。
摘要由CSDN通过智能技术生成

from sklearn.model_selection import train_test_split



#划分30%的数据作为测试集

Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data, wine.target, test_size=0.3)



clf = DecisionTreeClassifier(random_state=0) #建立模型: 决策树

rfc = RandomForestClassifier(random_state=0) #建立模型: 随机森林



clf = clf.fit(Xtrain, Ytrain) # 训练模型: 决策树

rfc = rfc.fit(Xtrain, Ytrain) # 训练模型: 随即森林



score_c = clf.score(Xtest, Ytest) #返回预测的准确度: 随机森林

score_r = rfc.score(Xtest, Ytest) #返回预测的准确度: 决策树



# 打印出准确度

print("single Tree:{}".format(score_c),

      "Random Forest:{}".format(score_r)) 

single Tree:0.9444444444444444 Random Forest:0.9814814814814815




可见随机森林默认就比决策树准确度要高。



**4、画出随机森林和决策树在一组交叉验证下的效果对比**



> **交叉验证**  

> 将数据集划分为n份,依次取每一份做测试集,每n-1份做训练集,多次训练模型以观测模型稳定性的方法



from sklearn.model_selection import cross_val_score

import matplotlib.pyplot as plt

随机森林

rfc = RandomForestClassifier(n_estimators=25)

rfc_s = cross_val_score(rfc, wine.data, wine.target, cv=10)

决策树

clf = DecisionTreeClassifier()

clf_s = cross_val_score(clf, wine.data, wine.target, cv=10)

plt.plot(range(1,11), rfc_s, label = “RandomForest”)

plt.plot(range(1,11), clf_s, label = “Decision Tree”)

plt.legend()

plt.show()




![在这里插入图片描述](https://img-blog.csdnimg.cn/20210211213139202.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MzczNDA5NQ==,size_16,color_FFFFFF,t_70)  

另一种更加简单有趣的写法:



label = “RandomForest”

for model in [RandomForestClassifier(n_estimators=25),DecisionTreeClassifier()]:

score = cross_val_score(model,wine.data, wine.target, cv=10)

print("{}:".format(label)),print(score.mean())

plt.plot(range(1,11),score,label = label)

plt.legend()

label = "DecisionTree" 



![在这里插入图片描述](https://img-blog.csdnimg.cn/20210211213509450.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MzczNDA5NQ==,size_16,color_FFFFFF,t_70)  

**5、画出随机森林和决策树在十组交叉验证下的效果对比**



rfc_l = []

clf_l = []

for i in range(10):

rfc = RandomForestClassifier(n_estimators=25)

rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10).mean()

rfc_l.append(rfc_s)



clf = DecisionTreeClassifier()

clf_s = cross_val_score(clf,wine.data,wine.target,cv=10).mean()

clf_l.append(clf_s)

plt.plot(range(1,11), rfc_l, label=“Random Forest”)

plt.plot(range(1,11), clf_l, label=“Decision Tree”)

plt.legend()

plt.show()




![在这里插入图片描述](https://img-blog.csdnimg.cn/2021021122074319.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MzczNDA5NQ==,size_16,color_FFFFFF,t_70)  

**6、n\_estimators的学习曲线**



#####【TIME WARNING: 2mins 30 seconds】#####

superpa = []

for i in range(200):

rfc = RandomForestClassifier(n_estimators=i+1,n_jobs=-1)

rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10).mean()

superpa.append(rfc_s)

print(max(superpa), superpa.index(max(superpa))) # 0.9888888888888889 53

plt.figure(figsize=[20,5])

plt.plot(range(1,201),superpa)

plt.show()




![在这里插入图片描述](https://img-blog.csdnimg.cn/20210211221112484.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值