国防科大、中大0706大气科学及南信大大物院初试复习宝典——超全公式推导和计算题考点

零、前言

本人为24考研人,一开始想考中山大学,后来改考国防科技大学,最终总分390,因为一直有用博客做笔记的习惯,考后打算将考研期间的复习笔记无偿分享出来,因为之前在一些网站上买的资料太垃圾了,又贵又垃圾实在看不惯他们,还不如自己的笔记,买资料也建议看看有无直系学长总结的资料卖,就算要钱卖的也是干货和对学弟学妹的关心,我就很幸运遇到一个真心想帮学弟学妹在中大的学长

这个系列博客包含南信大大气物理学院,中山大学或国防科技大学0706大气科学研究生初试中超全知识点,三所学校所考内容参考书目相同,但考试题型不同,国防科技大学会考计算和推导,因此南信大、中大的考试内容是国防科大考试的子集,一篇顶三校考纲

各个知识点我会将重点标出以便大家复习,标了重点的一定要回参考书目中自己再弄懂一遍

文章内容大部分来自本人啃书得到,少部分来自购买资料,基本纯手敲
如果有疏漏和错误敬请在评论中指出,欢迎大家批评指正

这个公式推导和计算题考点真的花了很多心思,显示Markdown有25000字,包含我认为每一章可能考到的推导和计算题考点,最后考试的时候计算题虽然不难但做的时候信心也没这么足,还是要准备万全一些!

一、湿度篇

1.1 各个湿度参量

  • 绝对湿度(absolute_humidity) ρ v = m v V \rho_v=\frac{m_v}{V} ρv=Vmv:湿空气的水汽分质量 / 气块总体积
  • 混合比(mixing_ratio) r = m v m d r=\frac{m_v}{m_d} r=mdmv:湿空气质量 / 干空气质量
  • 比湿(specific_humidity) q = m v m = m v m d + m v q = \frac{m_v}{m} = \frac{m_v}{m_d+m_v} q=mmv=md+mvmv:湿空气的质量 / 空气总质量;实际大气中由于湿空气质量远小于干空气质量,因此比湿约等于混合比
  • 相对湿度(relative_humidity) f = e E f=\frac{e}{E} f=Ee:在一定的温度和压强下,实际水汽含量和该温度下饱和的水汽含量的比值,用百分比表示

1.2 理想气体状态方程

  • 普适气体常数R*=8.3145 J/(K*mol)
  • 比气体常数 R = R ∗ M ˉ R=\frac{R^*}{\bar M} R=MˉR R d 为干空气比气体常数, R v 为水汽比气体常数(是水汽而不是湿空气), R_d为干空气比气体常数,R_v为水汽比气体常数(是水汽而不是湿空气), Rd为干空气比气体常数,Rv为水汽比气体常数(是水汽而不是湿空气),

P V = m M ˉ R ∗ T PV=\frac{m}{\bar M}R^*T PV=MˉmRT
P V = m R T PV={m}RT PV=mRT
P V = n R ∗ T PV=nR^*T PV=nRT
P = ρ R T P=\rho RT P=ρRT
P α = R T , α = 1 / ρ P\alpha = RT, \alpha=1 / \rho Pα=RT,α=1/ρ

1.3 ϵ ≈ \epsilon \approx ϵ 0.622

R d R v = R ∗ / M ˉ d R ∗ / M ˉ v = M ˉ v M ˉ d ≈ 0.622 \frac{R_d}{R_v}=\frac{R^*/\bar M_d}{R^*/\bar M_v}=\frac{\bar M_v}{\bar M_d}\approx 0.622 RvRd=R/MˉvR/Mˉd=MˉdMˉv0.622

1.4 湿度参量之间的换算

1.4.1 相对湿度

r = m v m d (单位体积) = ρ v ρ d = e / R v T ( p − e ) R d T = R d R v e p − e ≈ 0.622 e p − e r=\frac{m_v}{m_d}(单位体积)=\frac{\rho_v}{\rho_d}=\frac{e/R_vT}{(p-e)R_dT}=\frac{R_d}{R_v}\frac{e}{p-e}\approx0.622\frac{e}{p-e} r=mdmv(单位体积)=ρdρv=(pe)RdTe/RvT=RvRdpee0.622pee

1.4.2 比湿

q = r 1 + r , 代入上面比湿得到 q = 0.622 e p − 0.378 e q=\frac{r}{1+r},代入上面比湿得到q=0.622\frac{e}{p-0.378e} q=1+rr,代入上面比湿得到q=0.622p0.378ee
考试中可以使用
r ≈ q ≈ 0.622 e p 单位 ( g / g ) r\approx q \approx0.622 \frac{e}{p}单位(g/g) rq0.622pe单位(g/g)

1.4.3 绝对湿度

由 ρ = p / R T ,具体到湿空气就是 ρ v = e R v T = 0.622 e R d T 由\rho =p/RT,具体到湿空气就是\rho_v=\frac{e}{R_v T}=0.622\frac{e}{R_d T} ρ=p/RT,具体到湿空气就是ρv=RvTe=0.622RdTe
需要注意的是,如果e用的是hPa,最后要乘以 1 0 5 10^5 105得到的单位才是 g / m 3 g/m^3 g/m3,这一点在18年真题中就考了,一定要自己根据量纲推到一次最后的单位量级

1.5 湿空气的摩尔质量推导(虚温推导)

M ˉ a = m v + m d n v + n d (各部分质量和物质的量之比) = m v + m d m v M v + m d M d (将物质的量用质量和摩尔质量表示) \bar M_a = \frac{m_v+m_d}{n_v+n_d}(各部分质量和物质的量之比)=\frac{m_v+m_d}{\frac{m_v}{M_v}+\frac{m_d}{M_d}}(将物质的量用质量和摩尔质量表示) Mˉa=nv+ndmv+md(各部分质量和物质的量之比)=Mvmv+Mdmdmv+md(将物质的量用质量和摩尔质量表示)
之后分子分母同除总质量 = 1 q M v + 1 − q M d 之后分子分母同除总质量=\frac{1}{\frac{q}{M_v}+\frac{1-q}{M_d}} 之后分子分母同除总质量=Mvq+Md1q1
分子分母同乘 M d 得到 M ˉ a = M d M d M v q + 1 − q ≈ M d 1 + 0.608 q 分子分母同乘M_d得到\bar M_a=\frac{M_d}{\frac{M_d}{M_v}q+1-q}\approx \frac{M_d}{1+0.608q} 分子分母同乘Md得到Mˉa=MvMdq+1qMd1+0.608qMd

有了湿空气的平均摩尔质量,就可以计算出湿空气比气体常数 R = R ∗ M d ( 1 + 0.608 q ) 有了湿空气的平均摩尔质量,就可以计算出湿空气比气体常数R=\frac{R^*}{M_d}(1+0.608q) 有了湿空气的平均摩尔质量,就可以计算出湿空气比气体常数R=MdR(1+0.608q)
这样就可以用干空气的比气体常数加上一个与湿度q有关的量表示湿空气的状态方程,将(1+0.608q)T共同组成虚温 T v T_v Tv,可以得到湿空气的状态方程
P = ρ R d ( 1 + 0.608 q ) T = ρ R d T v P=\rho R_d(1+0.608q)T=\rho R_d T_v P=ρRd(1+0.608q)T=ρRdTv

二、压高公式篇

2.1 微分形式

d p = − ρ g d z = − p g R d T v d z dp=-\rho gdz=-\frac{pg}{R_d T_v}dz dp=ρgdz=RdTvpgdz

2.2 积分形式

微分方程,两侧积分后代入上下限 P 1 , P 2 得到 P 2 = P 1 e x p ( − 1 R d ∫ g T v d z ) 微分方程,两侧积分后代入上下限P_1,P_2得到P_2=P_1 exp(-\frac{1}{R_d}\int\frac{g}{T_v}dz) 微分方程,两侧积分后代入上下限P1,P2得到P2=P1exp(Rd1Tvgdz)

2.3 均质大气

均质大气的密度不随高度变化,直接将原始方程进行积分

p 2 − p 1 = − ρ g ( z 2 − z 1 ) p_2-p_1=-\rho g(z_2-z_1) p2p1=ρg(z2z1)

气压随高度线性递减

2.3.1 均质大气减温率

由状态方程 p = ρ R T 两侧对 z 取微分 d p d z = ρ R d T d z = − ρ g 由状态方程p=\rho RT 两侧对z取微分 \frac{dp}{dz}=\rho R \frac{dT}{dz}=-\rho g 由状态方程p=ρRT两侧对z取微分dzdp=ρRdzdT=ρg
约去后得到 d T d z = − ρ g ,得到减温率 Γ = ρ g 约去后得到\frac{dT}{dz}=-\frac{\rho}{g},得到减温率\Gamma=\frac{\rho}{g} 约去后得到dzdT=gρ,得到减温率Γ=gρ
注意减温率在随高度降温情况下是个正数
这个减温率也成为自由对流减温率

2.4 等温大气

气温随高度不改变的大气称为等温大气

z 2 − z 1 = − R d T g l n p 2 p 1 即 p 2 = p 1 e x p [ − g R T ( z 2 − z 1 ) ] z_2-z_1=-\frac{R_dT}{g}ln\frac{p_2}{p_1}即p_2=p_1exp[-\frac{g}{RT}(z_2-z_1)] z2z1=gRdTlnp1p2p2=p1exp[RTg(z2z1)]

当进行气压站气压订正到海平面气压的时候,使用等温大气的压高公式

2.5 多元大气(高数复习到这阶段时候一定要亲自积分一次)

  • 温度随高度线性变化,即 γ = ∂ T ∂ z = c o n s t 为常数 \gamma = \frac{\partial T}{\partial z}=const为常数 γ=zT=const为常数
  • T 2 = T 1 − γ z T_2=T_1-\gamma z T2=T1γz带入 p 2 = p 1 e x p ( − ∫ z 1 z 2 g R d T d z ) p_2=p_1exp(-\int_{z1}^{z2}\frac{g}{R_dT}dz) p2=p1exp(z1z2RdTgdz)积分得到 p 2 = p 1 [ 1 − γ ( z 2 − z 1 ) T 1 ] g γ R d p_2=p_1[1-\frac{\gamma(z_2-z_1)}{T1}]^{\frac{g}{\gamma R_d}} p2=p1[1T1γ(z2z1)]γRdg

2.6 大气标高

当气压降低到原始的1/e时的高度

l n p 2 p 1 = l n e − 1 = − 1 = − 1 R d ∫ g T v d z ln\frac{p_2}{p_1}=lne^{-1}=-1=-\frac{1}{R_d}\int\frac{g}{T_v}dz lnp1p2=lne1=1=Rd1Tvgdz
根据不同的大气假设,可以将积分算出来,反解出对应的Z,就是大气标高

2.7 重力位势

Φ \Phi Φ表示,即单位质量的重力势能,单位J/kg

d Φ = g d z d \Phi = gdz dΦ=gdz 即 Φ = ∫ 0 z g d z 即\Phi=\int_0^zgdz Φ=0zgdz

2.8 位势高度

H = Φ ( z ) g 0 = 1 g 0 ∫ 0 z g d z H=\frac{\Phi(z)}{g_0}=\frac{1}{g_0}\int_0^zgdz H=g0Φ(z)=g010zgdz
单位为位势米gpm,因此位势高度就是位势 / 地球平均重力加速度

  • 理解的关键在于 g 0 g_0 g0是作为一个常数,跟不带下标的g要进行区分
  • 位势高度的, g 0 g_0 g0取常数为9.80665J/(kg*gpm),为地球平均重力加速度
  • 上式表达式中的积分中的g是随高度减小的,因此如果H较高的时候,g< g 0 g_0 g0,因此在高空位势高度是低于几何高度的

2.9 用位势高度表示的静力学方程

H = Φ ( z ) g 0 得到 g 0 d H = d Φ = g d z H=\frac{\Phi(z)}{g_0}得到g_0dH=d\Phi=gdz H=g0Φ(z)得到g0dH=dΦ=gdz
代入压高公式
d p = − ρ g d z = − ρ g 0 d H dp=-\rho gdz = -\rho g_0dH dp=ρgdz=ρg0dH
d p d H = − ρ g 0 \frac{dp}{dH}=-\rho g_0 dHdp=ρg0

对于等温大气,压高公式变为
p 2 = p 1 e x p [ − g 0 R T ( H 2 − H 1 ) ] p_2=p_1exp[-\frac{g_0}{RT}(H_2-H_1)] p2=p1exp[RTg0(H2H1)]

对于多元大气,压高公式变为
p 2 = p 1 [ 1 − γ ( H 2 − H 1 ) T 1 ] g 0 γ R d p_2=p_1[1-\frac{\gamma(H_2-H_1)}{T1}]^{\frac{g_0}{\gamma R_d}} p2=p1[1T1γ(H2H1)]γRdg0
(基本就是g变为 g 0 g_0 g0,Z变为H)

2.10 垂直气压梯度

− d p d z -\frac{dp}{dz} dzdp

2.11 单位气压高度差

− d z d p -\frac{dz}{dp} dpdz

2.12 大气质量的计算

单位面积下, m = ∫ ρ d z 单位面积下,m=\int \rho dz 单位面积下,m=ρdz
由 d p = − ρ g d z 得 − d p g = ρ d z = d m 由dp=-\rho g dz得\frac{-dp}{g}=\rho dz=dm dp=ρgdzgdp=ρdz=dm
积分得到 m = ∫ P 1 P 0 d p g 积分得到m=\int_{P_1}^{P_0} \frac{dp}{g} 积分得到m=P1P0gdp

三、辐射篇

3.1 立体角

定义:锥体所拦截的球面积半径的平方之比
单位:sr(球面度)
一个球面的立体角为 4 π 4\pi 4π

Ω = σ r 2 \Omega = \frac{\sigma}{r^2} Ω=r2σ
在这里插入图片描述
在这里插入图片描述

球坐标系下的立体角计算

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
假设辐亮度L不随方向变化,此时以与水平面呈 θ \theta θ角的方向射入,则上半球的积分辐照度公式为
E = ∫ 0 2 / π ∫ 0 2 π L c o s θ d Ω = ∫ 0 2 / π ∫ 0 2 π L c o s θ d θ d ϕ E=\int_{0}^{2/\pi}\int_{0}^{2\pi}Lcos\theta d\Omega=\int_{0}^{2/\pi}\int_{0}^{2\pi}Lcos \theta d\theta d\phi E=02/π02πLcosθdΩ=02/π02πLcosθdθdϕ

3.2 吸收系数

3.2.1 质量吸收系数

k a b , λ k_{ab, \lambda} kab,λ表示单位质量的粒子的吸收截面之和**

  • 单位是 m 2 / k g m^2/kg m2/kg

3.2.2 体积吸收系数

β a b , λ \beta_{ab, \lambda} βab,λ表示**单位体积粒子的吸收截面之和

  • 单位是 m − 1 m^{-1} m1

3.2.3 两者关系

β = k ρ ,此处的 ρ \beta = k\rho,此处的\rho β=kρ,此处的ρ是具有吸收作用气体的密度,而不是大气总密度

3.3 比尔定律(重中之重,23年计算题)

E λ ( l ) = E λ ( l 0 ) e x p ( − ∫ l 0 l k a b , λ ρ d l ) = E λ ( l 0 ) e x p ( − ∫ l 0 l β a b , λ d l ) E_{\lambda}(l)=E_{\lambda}(l_0)exp(-\int_{l_0}^l k_{ab, \lambda} \rho dl)=E_{\lambda}(l_0)exp(-\int_{l_0}^l \beta_{ab, \lambda} dl) Eλ(l)=Eλ(l0)exp(l0lkab,λρdl)=Eλ(l0)exp(l0lβab,λdl)

  • 只考虑了吸收之后简化的辐射基本方程
  • 吸收中辐射强度随光学厚度e指数衰减

3.4 光学质量

定义 u = ∫ 0 l ρ d l u=\int_0^l \rho dl u=0lρdl为光学质量,表示沿传输路径单位面积气柱内吸收或散射气体的总质量,单位为 k g / m 2 kg/m^2 kg/m2

3.5 光学厚度

沿辐射传输路径,单位截面上所有吸收和散射物质产生的总衰减

u = ∫ l 0 l k a b , λ ρ d l = ∫ l 0 l β a b , λ d l u=\int_{l_0}^l k_{ab, \lambda}\rho dl=\int_{l_0}^l \beta_{ab, \lambda} dl u=l0lkab,λρdl=l0lβab,λdl

  • 体积消光系数在一段距离的积分就是光学厚度
  • 将比尔定律中的e指数衰减的幂指数(取正),就是光学厚度

3.6 透过率

τ = e x p ( − ∫ l 0 l k a b , λ ρ d l ) = L ( l ) L ( l 0 ) \tau=exp(-\int_{l_0}^l k_{ab, \lambda}\rho dl)=\frac{L(l)}{L(l_0)} τ=exp(l0lkab,λρdl)=L(l0)L(l)

  • 出射辐射强度比上入射辐射强度就是透过率
  • 也就是比尔定律中的指数部分
  • 实际工作中关注的是一个波数区间内的平均透过率 τ Δ ν = 1 Δ ν ∫ Δ ν τ ν d ν \tau_{\Delta \nu}=\frac{1}{\Delta \nu}\int_{\Delta \nu} \tau_{\nu}d\nu τΔν=Δν1Δντνdν
  • 严格意义上为了得到投射函数,需要考虑吸收系数在波数范围内的变化情况,通过数值积分计算平均透过率,这种方法叫做逐线积分

3.7 太阳常数求太阳有效温度

日地距离为半径的球接收到的辐射能就是太阳这个球体发出的辐射能
4 π R 2 S 0 = 4 π r s 2 F 4\pi R^2 S_0=4\pi r_s^2F 4πR2S0=4πrs2F
反解出 F 得到 F = R 2 S 0 r s 2 = σ T 4 由玻尔兹曼定律得到太阳有效温度 T 反解出F得到F=\frac{R^2 S_0}{r_s^2}=\sigma T^4由玻尔兹曼定律得到太阳有效温度T 反解出F得到F=rs2R2S0=σT4由玻尔兹曼定律得到太阳有效温度T

3.8 具体日地距离位置的太阳常数

S = S 0 ( r 0 r ) 2 S=S_0(\frac{r_0}{r})^2 S=S0(rr0)2

3.9 时角

ω = 2 π T ( t − 12 ) , 以小时制 T 为 24 小时, t 为目前时间 \omega=\frac{2\pi}{T}(t-12),以小时制T为24小时,t为目前时间 ω=T2π(t12),以小时制T24小时,t为目前时间

3.10 天顶角的cos值或太阳高度角的sin值

c o s θ = s i n ϕ s i n δ + c o s ϕ c o s δ c o s ω cos\theta = sin\phi sin\delta+cos\phi cos\delta cos\omega cosθ=sinϕsinδ+cosϕcosδcosω
其中 ϕ 为纬度, ω 为时角 其中\phi为纬度,\omega为时角 其中ϕ为纬度,ω为时角

3.11 大气上界水平面上的太阳辐射(应该不会考)

  • 由于不同时刻太阳处于不同的高度角,入射到大气上界水平面上的太阳辐照度应为其在垂直方向的投影,即
    S 0 ′ = S 0 s i n h θ = S ˉ 0 ( d 0 d ) 2 ( s i n φ s i n δ + c o s φ c o s δ c o s ω ) S_0'=S_0 sinh_\theta=\bar S_0(\frac{d_0}{d})^2(sin\varphi sin\delta+cos\varphi cos \delta cos \omega) S0=S0sinhθ=Sˉ0(dd0)2(sinφsinδ+cosφcosδcosω)

  • 如果要计算一天的太阳辐射总量,需要确定昼长,太阳升起和落下的时候 h θ h_\theta hθ为0,由此可以解出日出和日落对应的太阳时角

  • 知道了日出和日落的太阳时角,对其进行积分就可以得到一天该点处的
    Q d = ∫ − ω ω S ˉ 0 ( d 0 d ) 2 ( s i n φ s i n δ + c o s φ c o s δ c o s ω ) T 2 π d ω Q_d=\int_{-\omega}^{\omega}\bar S_0(\frac{d_0}{d})^2(sin\varphi sin\delta+cos\varphi cos \delta cos \omega)\frac{T}{2\pi}d\omega Qd=ωωSˉ0(dd0)2(sinφsinδ+cosφcosδcosω)2πTdω

积分结果为 Q = T π S ˉ 0 ( d 0 d ) 2 ( ω 0 s i n φ s i n δ + c o s φ c o s δ s i n ω 0 ) Q=\frac{T}{\pi}\bar S_0(\frac{d_0}{d})^2(\omega_0 sin\varphi sin\delta+cos\varphi cos \delta sin \omega_0) Q=πTSˉ0(dd0)2(ω0sinφsinδ+cosφcosδsinω0),此处T取86400s

3.12 相对大气质量数

  • 不考虑大气折射的平面平行大气中 m = s e c θ m=sec\theta m=secθ
  • 准确定义是相对大气质量指日光自 θ \theta θ角倾斜入射时与自天定入射时候的光学厚度之比
  • 对于不同成分的大气,有不同的经验公式可以使用来近似计算光学厚度

3.13 施瓦氏方程

3.13.1 微分形式的推导

同时考虑发射和吸收,先来研究吸收,辐亮度的变化量表示为
d L = − β L d l ( 单位体积内所有吸收截面之和 ∗ 辐射能相关量 = 吸收掉的能量 ) dL=-\beta L dl(单位体积内所有吸收截面之和 * 辐射能相关量=吸收掉的能量) dL=βLdl(单位体积内所有吸收截面之和辐射能相关量=吸收掉的能量)
又根据基尔霍夫定律,吸收率 / 发射率 = 该温度下黑体的辐出度
d L L = β L d l L B ( T ) = 吸收率 ∗ 该温度下黑体辐出度 = 发射率 \frac{dL}{L}=\frac{\beta Ldl}{L}B(T)=吸收率*该温度下黑体辐出度=发射率 LdL=LβLdlB(T)=吸收率该温度下黑体辐出度=发射率
将两者结合在一起,即同时考虑气层的发射和吸收
d L = − β ( L − B ( T ) ) d l = − β ( L − B ( T ) ) c o s θ d z dL=-\beta(L-B(T))dl=-\beta(L-B(T))cos\theta dz dL=β(LB(T))dl=β(LB(T))cosθdz

长波辐射在大气中的传输过程与太阳辐射传输的不同点:

  • 地面和大气的辐射是漫射辐射们需要包括对立体角的积分
  • 大气吸收长波辐射的同时还会向外辐射,需要同时考虑发射和吸收
  • 空气分子对长波辐射的散射可以忽略

假设大气是水平均一的,大气中各种成分的温度和密度仅是高度的函数

施瓦氏方程的核心思想就是在某高度处的大气即会发射辐射,也会吸收辐射,发射的辐亮度用 k a b B ( T ) k_{ab}B(T) kabB(T)表示,由基尔霍夫定律发射率=吸收率*该温度下黑体的辐出度,因此用吸收率乘以该温度下黑体的辐出度就为该点的发射的辐出度

3.13.2 对微分形式进行积分得到最终形式

L ( δ 1 ) = L ( δ 0 ) e − δ 0 μ + ∫ δ 1 δ 0 B [ T ( δ ) ] e − δ ′ − δ μ d δ ′ μ L(\delta_1) = L(\delta_0)e^{-\frac{\delta_0}{\mu}}+\int^{\delta_0}_{\delta_1}B[T(\delta )]e^{-\frac{\delta'-\delta}{\mu}}d\frac{\delta'}{\mu} L(δ1)=L(δ0)eμδ0+δ1δ0B[T(δ)]eμδδdμδ
物理意义:接收端接收到的辐亮度 = 发射端的辐亮度经过衰减后的辐亮度+之间大气发射后经过剩下距离衰减后的积分结果
需要注意的是:右侧第二项如果写成+的,那积分的路径是从接收端到发射端,因为使用的坐标是 δ \delta δ的光学厚度坐标,与z为正方向的坐标方向是相反的,需要特别留意

推导部分有点复杂,需要同乘一个东西后凑微分,之后再积分,比较巧妙
在这里插入图片描述

3.14 长法测量(重点)

用线性拟合得到太阳常数

由大气质量数,可以用垂直路径长度表示实际路径
m = s e c θ , d l = m d z ( 就是乘了个三角函数) m=sec\theta,dl=mdz(就是乘了个三角函数) m=secθdl=mdz(就是乘了个三角函数)
这样比尔定律可以表示为
E = E 0 e − ∫ β d l = E 0 e − m ∫ β d z = E 0 e − m δ ,这里的 δ 为垂直光学厚度 E=E_0 e^{-\int \beta dl}=E_0 e^{-m\int \beta dz}=E_0 e^{-m\delta},这里的\delta为垂直光学厚度 E=E0eβdl=E0emβdz=E0emδ,这里的δ为垂直光学厚度
两边取对数之后得到
l n E = l n E 0 − m δ lnE = lnE_0 - m\delta lnE=lnE0mδ
而E,m都是可以测量的,遮掩的话未知数就是 l n E 0 和 δ lnE_0和\delta lnE0δ
可以看作y=Bx+A,进行线性拟合,得到太阳常数S以及垂直光学厚度

3.15 全球辐射平衡两层模式

地面辐射平衡公式为 : ( 1 − A s − R ) S 1 + σ T A 4 A l = σ T g 4 地面辐射平衡公式为:(1-A_s-R)S_1+\sigma T_A^4A_l = \sigma T g^4 地面辐射平衡公式为:(1AsR)S1+σTA4Al=σTg4
即除去大气对短波的吸收以及行星反射率后地面吸收的短波 + 大气向地面发射的长波 = 地面自己发出的长波


大气顶的辐射平衡公式 S 1 = S 1 R + ( 1 − A l σ T g 4 ) + σ T A 4 A l 大气顶的辐射平衡公式S_1 = S_1R+(1-A_l \sigma T_g^4)+\sigma T_A^4A_l 大气顶的辐射平衡公式S1=S1R+(1AlσTg4)+σTA4Al
即大气顶入射的短波辐射 = 行星反照率反射回太空的短波 + 地面发射长波透过大气后剩余的 + 大气发射的长波


中间大气的辐射平衡公式 S 1 A s + σ T g 4 A l = 2 σ T A 4 A l 中间大气的辐射平衡公式 S_1A_s+\sigma T_g^4A_l = 2\sigma T_A^4A_l 中间大气的辐射平衡公式S1As+σTg4Al=2σTA4Al
即大气吸收的短波+吸收地面的长波 = 大气发射的长波(一定要注意大气的发射向上和向下要算两次,有个2倍

3.16 单层大气变温率

Δ F = m c p d T 即辐射通量的变化 = 热量的变化(用比热来表示,热力学第一定律部分会说) \Delta F = mc_p dT即辐射通量的变化=热量的变化(用比热来表示,热力学第一定律部分会说) ΔF=mcpdT即辐射通量的变化=热量的变化(用比热来表示,热力学第一定律部分会说)
同时 m = ρ V = ρ Δ z ( 考虑单位面积 ) 同时m=\rho V=\rho \Delta z(考虑单位面积) 同时m=ρV=ρΔz(考虑单位面积)
而辐射强度的改变其实就是辐射通量对时间取微分 Δ E = ∂ F ∂ t = ρ Δ z c p ∂ T ∂ t 而辐射强度的改变其实就是辐射通量对时间取微分 \Delta E = \frac{\partial F}{\partial t}=\rho \Delta z c_p\frac{\partial T}{\partial t} 而辐射强度的改变其实就是辐射通量对时间取微分ΔE=tF=ρΔzcptT
这样 ∂ T ∂ t 就出现了变温率,移项后得到 ∂ T ∂ t = Δ E Δ Z 1 ρ c p ,若觉得 ρ 不方便,用状态方程变换即可 这样\frac{\partial T}{\partial t}就出现了变温率,移项后得到\frac{\partial T}{\partial t} = \frac{\Delta E}{\Delta Z}\frac{1}{\rho c_p},若觉得\rho不方便,用状态方程变换即可 这样tT就出现了变温率,移项后得到tT=ΔZΔEρcp1,若觉得ρ不方便,用状态方程变换即可

四、热力学篇

4.1 热一

4.1.1 基本公式

U − U 0 = W + Q U-U_0=W+Q UU0=W+Q

  • U − U 0 就是内能的改变量,是状态量 U-U_0就是内能的改变量,是状态量 UU0就是内能的改变量,是状态量
  • W表示系统与外界做功的交换,是过程量,W>0表示外界对系统做功
  • Q表示系统与外界热量的交换,也是过程量,Q>0表示外界向系统输送热量

4.1.2 微分形式

d U = δ W + δ Q dU=\delta W+\delta Q dU=δW+δQ
之所以U用d,剩下两个用delta,是因为内能是状态量,做功和热传导是过程量
对于准静态系统,系统内部压强和外界压强始终相等,因此 p ˉ \bar p pˉ恒定,则dW可以写成 δ W = − p ˉ d V \delta W=-\bar pdV δW=pˉdV
用压强乘体积的改变量表示外界对系统做功的大小,则微分形式可以表示成
d U = − p ˉ d V + δ Q dU=-\bar pdV+\delta Q dU=pˉdV+δQ

4.2 比态量

由于大气的质量很难获取,因此常用比态量来表是上述方程,比态量就是强度量/质量

  • 强度量常用的有内能U,热量Q,功W,熵S,焓H,自由能G和体积V,强度量是指没有方向的标量物理量,压强就不是强度量
  • 而比态量就是强度量除以质量,一般用对应的小写字母表示,如比内能u=U/m、比热q=Q/m,比容 α = V / m = 1 / ρ \alpha=V/m=1/\rho α=V/m=1/ρ,比热q容易和比湿混淆,书写上仍用Q表示比热
  • 将上式用比态量表示为
    δ Q = m ( d u + p d α ) \delta Q=m(du+pd\alpha) δQ=m(du+pdα)

4.3 焓

H=U+pV,即内能和压能之和

  • 比焓 h = H / m = u + p α h=H/m=u+p\alpha h=H/m=u+pα
  • δ Q = d ( U + p V ) − V d p = d H − V d p \delta Q=d(U+pV)-Vdp=dH-Vdp δQ=d(U+pV)Vdp=dHVdp,如果用比态量表示就是
    δ Q = m ( d h − α d p ) \delta Q=m(dh-\alpha dp) δQ=m(dhαdp)
  • 在等压过程中,焓的变化就是热量的变化

c p = δ Q d T = ( ∂ H ∂ T ) p c_p=\frac{\delta Q}{dT}=(\frac{\partial H}{\partial T})_p cp=dTδQ=(TH)p

4.4 比热

实验表明,一定质量的系统吸收或放出的热量与温度变化有密切关系

δ Q = m c d T , c 就为系统的比热容 \delta Q=mcdT,c就为系统的比热容 δQ=mcdTc就为系统的比热容

  • 在等压过程和等容过程中的比热称为定压比热 c p c_p cp和定容比热 c v c_v cv
  • 对于等容过程, d α = 0 d\alpha=0 dα=0,第一定律就化为 d Q = d U = m d u = m c v d T dQ=dU=mdu=mc_vdT dQ=dU=mdu=mcvdT;即 d u = c v d T du=c_vdT du=cvdT
  • 对于等压过程, d p = 0 dp=0 dp=0,第一定律化为 d Q = d H = m d h = m c p d T dQ=dH=mdh=mc_pdT dQ=dH=mdh=mcpdT,即 d h = c p d T dh=c_pdT dh=cpdT

4.5 结合状态方程

由 h = u + p α ; p α = R T 连立得 由h=u+p\alpha;p\alpha=RT连立得 h=u+pαpα=RT连立得
d h = d u + R d T = c v d T + R d T = c p d T ,可见 dh=du+RdT=c_vdT+RdT=c_pdT,可见 dh=du+RdT=cvdT+RdT=cpdT,可见
c p = c v + R c_p=c_v+R cp=cv+R
因此第一定理还可以写成(气象上常用的热力学方程)
δ Q = m ( c v d T + p d α ) = m ( c p d T − α d p ) \delta Q=m(c_vdT+pd\alpha)=m(c_pdT-\alpha dp) δQ=m(cvdT+pdα)=m(cpdTαdp)

4.6 热二

第二定律阐述的是系统状态变化的方向以及系统达到平衡或处于平衡的必要条件,其进行的限度是系统的熵达到最大
另一种表述:从平衡态开始而终于另一个平衡态的过程,将朝着系统与外界总熵增加的方向进行

S − S 0 ≥ ∫ ω 0 ω δ Q T ˉ S-S_0 \geq \int_{\omega_0}^\omega \frac{\delta Q}{\bar T} SS0ω0ωTˉδQ

  • S − S 0 S-S_0 SS0表示终态的熵-初态的熵, ω 表示状态 \omega表示状态 ω表示状态 T ˉ \bar T Tˉ表示环境温度
  • 熵是状态量,因此与积分路径无关
  • 在可逆过程中,上式取等号,同时可逆过程中时刻处于平衡态,因此温度等于环境温度, T = T ˉ , T=\bar T, T=Tˉ取微分就为 d S = δ Q T dS=\frac{\delta Q}{T} dS=TδQ
  • 定义系统熵:熵在可逆过程中的变化等于系统所吸收的热量与热源的绝对温度之比
  • 因此对于可逆绝热过程, δ Q = 0 \delta Q=0 δQ=0,为等熵过程
  • 但对于不可逆绝热过程 d S > δ Q / T > 0 dS>\delta Q/T>0 dS>δQ/T>0,为熵增过程,因此在不可逆过程中,系统总熵将增加

4.7 自由焓(吉布斯自由能)

定义G=H-TS=U+pV-TS

取微分 d G = d U + p d V + V d p − T d S − S d T 取微分 dG=dU+pdV+Vdp-TdS-SdT 取微分dG=dU+pdV+VdpTdSSdT
其中 d U + p d V − T d S < = 0 其中dU+pdV-TdS<=0 其中dU+pdVTdS<=0
因此有 d G < = V d p − S d T 因此有dG<=Vdp-SdT 因此有dG<=VdpSdT

  • 封闭系统在外界恒温恒压,只做体胀功,以及系统的初态、终态与外界温度和气压相等时自由焓永不增加;对于可逆过程 Δ G = 0 \Delta G=0 ΔG=0,对不可逆过程 Δ G < 0 \Delta G<0 ΔG<0

4.8 麦克斯韦关系式

T d s = d u + p d α Tds=du+pd\alpha Tds=du+pdα
T d s = d h − α d p Tds=dh-\alpha dp Tds=dhαdp
S d T = V d p − d G SdT=Vdp-dG SdT=VdpdG

4.9 相变潜热

定义相变潜热 l l l单位质量的1相态转变为同温度的2相态时,从外界吸收的热量

  • 假设相变是在等温(即等压)条件下进行的,因此热量的改变量就是焓的改变量
    l 1 , 2 = h 1 − h 2 l_{1,2}=h_1-h_2 l1,2=h1h2

4.10 克拉珀龙——克劳修斯方程

  • 相变平衡:水物质汽液两相平衡共存于系统且两相的水物质的质量保持不变,称为相变平衡;此时水汽压称为饱和水汽压;两相的温度,压强,1mol物质的吉布斯函数(化学势)相等且不发生变化
  • 克拉珀龙——克劳修斯方程描述的就是相平衡时饱和水汽压随温度变化的关系式
  • 对于可逆相变而言,有自由焓不变,即 Δ g = g 2 − g 1 = 0 \Delta g=g2-g1=0 Δg=g2g1=0
  • − s 1 d T + α 1 d p = − s 2 d T + α 2 d p -s_1dT+\alpha_1 dp=-s_2 dT+\alpha_2 dp s1dT+α1dp=s2dT+α2dp
  • 整理得到
    d p d T = s 2 − s 1 α 2 − α 1 = h 2 − h 1 T ( α 2 − α 1 ) = l T ( α 2 − α 1 ) \frac{dp}{dT}=\frac{s_2-s_1}{\alpha_2 - \alpha_1}=\frac{h_2-h_1}{T(\alpha_2 - \alpha_1)}=\frac{l}{T(\alpha_2 - \alpha_1)} dTdp=α2α1s2s1=T(α2α1)h2h1=T(α2α1)l
  • 方程中的p指的是平衡时的汽相压强,一般也可以用饱和水汽压表示
  • 该方程揭示了两相平衡时温度,压强,相变潜热之间的关系

4.11 应用于水和汽两相的近似公式(记忆)

d p s d T = l v T ( α v s − α l s ) \frac{dp_s}{dT}=\frac{l_v}{T(\alpha_{vs} - \alpha_{ls})} dTdps=T(αvsαls)lv

  • 这个表示的就是从汽相通过相变转化为液相时候的方程
  • 两相平衡时汽相的压强就是饱和水汽压E
  • 汽相的比容远大于液相的,因此 ( α v s − α l s ) ≈ a v s (\alpha_{vs} - \alpha_{ls})\approx a_{vs} (αvsαls)avs,并用 α v s = R v T E \alpha_{vs}=\frac{R_v T}{E} αvs=ERvT
  • 因此方程可以近似为
    d e s d T = e s l v R v T 2 ; l v 为蒸发潜热 \frac{de_s}{dT}=\frac{e_sl_v}{R_vT^2};l_v为蒸发潜热 dTdes=RvT2eslvlv为蒸发潜热

4.12 干绝热方程(重中之重)

干绝热过程:在垂直运动过程中,气块所含的水汽始终未达到饱和,没有发生相变的绝热过程,满足下述三个条件,干绝热方程是可逆过程

4.12.1 气块垂直运动的三个假定条件

  • 绝热条件:垂直运动中气块与气层始终不发生热量交换,因为气块在垂直运动中垂直速度较大,来不及和外界发生热量交换,同时短时间内由于辐射,湍流和分子传导等作用与外界交换的热量远小于其自身由于膨胀或压缩与外界交换的热量
  • 准静态条件:气块压强与气层压强始终相等
  • 静力平衡条件:气块做垂直运动时,气层是静止的
    这样气块的气压随高度的变化和气层气压随高度的变化是一致的

4.12.2 方程本身

  • 由于绝热过程,第一定律写为
    0 = m ( c p m d T − R m T d p p ) 0=m(c_{pm}dT-R_mT\frac{dp}{p}) 0=m(cpmdTRmTpdp)
    积分后写为 T T 0 = ( p p 0 ) R m / c p m 积分后写为\frac{T}{T_0}=(\frac{p}{p_0})^{R_m/c_{pm}} 积分后写为T0T=(p0p)Rm/cpm

  • 可见干绝热过程中,气块的温度仅取决于气压

  • κ = R m c p m ≈ κ d = 0.286 \kappa =\frac{R_m}{c_{pm}}\approx\kappa_d=0.286 κ=cpmRmκd=0.286

4.13 干绝热过程位温守恒

两端取对数之后进行全微分,变形后得到
T c p m d θ m θ m = c p m d T − R m T d p p Tc_{pm}\frac{d\theta_m}{\theta_m}=c_{pm}dT-R_mT\frac{dp}{p} Tcpmθmdθm=cpmdTRmTpdp
左右两边同乘质量m
m T c p m d θ m θ m = m ( c p m d T − R m T p d p ) = δ Q mTc_{pm}\frac{d\theta_m}{\theta_m}=m(c_{pm}dT-\frac{R_mT}{p}dp)=\delta Q mTcpmθmdθm=m(cpmdTpRmTdp)=δQ
也可以写成

d s = c p m d θ m θ m ds=c_{pm}\frac{d\theta_m}{\theta_m} ds=cpmθmdθm

可见,位温的改变其实是由于热量的变化造成的气块吸热其位温增高,放出时位温降低,而绝热过程中热量不变,因此位温守恒,同时比熵也是相等的,干绝热过程也称为等熵过程

4.14 位温的垂直变化

对热力学方程两端取对数之后对z求偏导
∂ θ ∂ z θ = ∂ T ∂ z T − R c p ∂ p ∂ z = − γ T + g c p 1 T \frac{\partial \theta}{\partial z \theta}=\frac{\partial T}{\partial z T}-\frac{R}{c_p}\frac{\partial p}{\partial z}=-\frac{\gamma}{T}+\frac{g}{c_p}\frac{1}{T} zθθ=zTTcpRzp=Tγ+cpgT1

其中 g c p \frac{g}{c_p} cpg就是干绝热递减率 γ v \gamma_v γv; γ \gamma γ就是气块温度递减率
∂ θ ∂ z = θ T ( γ v − γ ) ≈ θ T ( γ d − γ ) \frac{\partial \theta}{\partial z}=\frac{\theta}{T}(\gamma_v - \gamma)\approx \frac{\theta}{T}(\gamma_d - \gamma) zθ=Tθ(γvγ)Tθ(γdγ)

可见当气层温度递减率=干绝热递减率时,位温不随高度变化;一般状况下大气垂直递减率小于干绝热递减率,因此一般而言,位温随高度是增加的

4.15 干绝热直减率

未饱和湿空气在可逆干绝热过程中温度随高度上升的降低率称为干绝热直减率 γ d = − d T d z \gamma_d=-\frac{dT}{dz} γd=dzdT

由热力学方程
0 = m ( c p m d T − R m T d p p ) 即 0=m(c_{pm}dT-R_mT\frac{dp}{p})即 0=m(cpmdTRmTpdp)
以及静力平衡方程,以及准静态假设条件
d p d z = d p ˉ d z = − ρ ˉ g = − p R T ˉ g \frac{dp}{dz}=\frac{d\bar p}{dz}=-\bar \rho g=-\frac{p}{R\bar T}g dzdp=dzdpˉ=ρˉg=RTˉpg
联立得(气块的气压和温度与气层近似看作相等)
γ d = − d T d z ≈ g c p m ≈ 9.8 ( k / k m ) \gamma_d=-\frac{dT}{dz}\approx \frac{g}{c_{pm}}\approx9.8 (k/km) γd=dzdTcpmg9.8(k/km)
其中R是湿空气的比气体常数,cp是湿空气的比热,只是因为实际大气中q太小了,近似用干空气R与cp就足够精确了

4.16 露点在干绝热过程中的递减率

由于在干绝热上升中,没有液态水凝结出来,因此比湿不变 q = 0.622 e p − 0.378 e ≈ 0.622 e p q=0.622\frac{e}{p-0.378e}\approx0.622 \frac{e}{p} q=0.622p0.378ee0.622pe

两端取对数求积分得到
d l n q ≈ d l n e − d l n p = 0 dlnq\approx dlne-dlnp=0 dlnqdlnedlnp=0
可见e和p的变化是相等的,即水汽压是随气压变化的,随着气压的降低水汽压也是降低的,水汽压和露点温度也是挂钩的,因此露点温度和气压也是相关的,气压越低,水汽压越小,温度越低,露点温度也会降低
由于水汽压e和气压p的变化是相同的,因此克劳修斯方程可以写为
d e d T d = l v e R v T d 2 与 d l n e = d l n p 连立得到 \frac{de}{dT_d}=\frac{l_v e}{R_vTd^2}与dlne=dlnp连立得到 dTdde=RvTd2lvedlne=dlnp连立得到
β d = d T d d z = R v T d 2 l v p d p d z = − g T d 2 R v R d T ˉ v l v \beta_d=\frac{dT_d}{dz}=\frac{R_vT_d^2}{l_vp}\frac{dp}{dz}=-\frac{gT_d^2R_v}{R_d \bar T_v l_v} βd=dzdTd=lvpRvTd2dzdp=RdTˉvlvgTd2Rv
若取 T d T ˉ v ≈ 1 \frac{T_d}{\bar T_v}\approx1 TˉvTd1,则 β d ≈ 1.7 k / k m \beta_d \approx 1.7k/km βd1.7k/km

4.17 湿绝热方程

相比干绝热方程,多了潜热项
c p d d T − α d p + L v d r s ≈ 0 c_{pd}dT-\alpha dp+L_v dr_s \approx 0 cpddTαdp+Lvdrs0
Lv为相变潜热,dr为饱和水汽混合比的变化,可以理解为水汽混合比发生变化就要释放潜热或者吸收热量,导致热量的变化

  • 具体来讲,混合比减少,说明水汽减少,液态水增加,有潜热释放,移到右侧就是大于0的,就等于向系统中提供了热量的效果

4.18 水平绝热混合

简化的等压绝热混合温度的计算式
T ≈ m 1 T 1 + m 2 T 2 m T\approx \frac{m_1T_1+m_2T_2}{m} Tmm1T1+m2T2
对水汽压和位温也有同样形式的质量加权形式的混合后表达式

因此两股未饱和的空气混合后有可能会发生凝结
喷气飞机的尾流和开水壶喷出的雾气就是典型例子

4.19 垂直绝热混合

  • 首先将两气块通过绝热膨胀或冷却压缩移到同一参考高度,该过程中位温和比湿守恒
  • 之后在该高度上进行水平混合,同样是按质量加权混合,得到新的混合后的位温
  • 之后用位温的逆公式,让气块绝热回到原来的高度
    T = θ ( p 1000 ) κ T=\theta(\frac{p}{1000})^\kappa T=θ(1000p)κ,就可以得到垂直混合之后的温度

4.20 静力稳定度(气块法——重要)

当物体处于静力平衡时,其平衡性质是不一样的,给一个外力使其偏离平衡位置后的运动趋势,可能维持平衡,可能加速偏离平衡位置,或在新的位置上静止

层结大气所具有的这种影响垂直运动的特性称为大气的静力稳定度

如果有个气块受力后产生垂直运动,撤去外力后,可能出现这几种类型的运动情况:

  • 气块减速,回到原位——稳定
  • 气块往原方向加速运动——不稳定
  • 在新的位置静止——中性

大气稳定度是== 表示大气层结对气块能否产生对流的一种潜力的度量==

4.20.1 气块法的假设(重要)

  • 假设气块做垂直运动时,周围空气始终处于静力平衡状态
  • 气块与周围环境无混合
  • 气块与周围环境的气压时刻相等
  • 其假设就是气块法的局限性所在

4.20.2 垂直加速度判据(重要)

从气块的垂直加速度入手,垂直加速度 = 垂直方向受力 / 质量
F = − ∂ p ∂ z d z − m g F=-\frac{\partial p}{\partial z}dz-mg F=zpdzmg
同时除以 m = ρ d z m=\rho dz m=ρdz(因为是单位面积,因此体积就是1dz)
d w d z = − 1 ρ ∂ p ∂ z − g \frac{dw}{dz}=-\frac{1}{\rho}\frac{\partial p}{\partial z}-g dzdw=ρ1zpg
∂ p ∂ t = − ρ e g \frac{\partial p}{\partial t}=-\rho_e g tp=ρeg即环境温度大气的密度
d w d t = ρ e ρ g − g = ρ e − ρ ρ g \frac{dw}{dt}=\frac{\rho_e}{\rho}g-g=\frac{\rho_e - \rho}{\rho}g dtdw=ρρegg=ρρeρg
由此可见,气块和环境的密度差决定了气块的加速度
由准静力条件得
ρ e ρ = T v T v e ≈ T T e \frac{\rho_e}{\rho}=\frac{T_v}{T_{ve}}\approx \frac{T}{T_{e}} ρρe=TveTvTeT
d w d t = T − T e T e g \frac{dw}{dt}=\frac{T - T_e}{T_e}g dtdw=TeTTeg
因此用气块和环境的温差也可以判断加速度方向
注意密度之比和温度之比是反比,密度是环境-气块,温度是气块-环境

4.20.3 用减温率表示的垂直加速度(重要)

气块减温率用 γ \gamma γ表示,气层减温率用 Γ \Gamma Γ表示
则经过一小段位移之后, T 0 T_0 T0为平衡时温度
T = T 0 − γ d z ; T e = T 0 − Γ d z T=T_0-\gamma dz;T_e=T_0-\Gamma dz T=T0γdzTe=T0Γdz
将上式带入后得到
d w d t = Γ − γ T e g d z \frac{dw}{dt}=\frac{\Gamma - \gamma}{T_e}gdz dtdw=TeΓγgdz
也就是用环境和气块温度递减率之差也可以表征气块加速度
如果气层温度递减率更大,说明气块温度高,是不稳定的

对于含有液态水的饱和气层,则用 γ m 与 γ \gamma_m与\gamma γmγ进行比较

4.20.4 用位温表达的稳定度(重要)

将气层的位温表达式等式两边取对数之后对z进行微分
1 θ ˉ ∂ θ ˉ ∂ z = 1 T ˉ ∂ T ˉ ∂ z − R d p ˉ c p d ∂ p ∂ z = − 1 T ˉ γ + g c p d 1 T ˉ \frac{1}{\bar \theta}\frac{\partial \bar \theta}{\partial z}=\frac{1}{\bar T}\frac{\partial \bar T}{\partial z}-\frac{R_d}{\bar p c_{pd}}\frac{\partial p}{\partial z}=-\frac{1}{\bar T}\gamma+\frac{g}{c_{pd}}\frac{1}{\bar T} θˉ1zθˉ=Tˉ1zTˉpˉcpdRdzp=Tˉ1γ+cpdgTˉ1
从而得到

∂ θ ˉ ∂ z = θ ˉ T ˉ ( γ d − γ ) \frac{\partial \bar \theta}{\partial z}=\frac{\bar \theta}{\bar T}(\gamma_d - \gamma) zθˉ=Tˉθˉ(γdγ)
可见当干绝热递减率大于气层的递减率时,是稳定的,环境位温随高度升高
如下结论:

  • ∂ θ ˉ ∂ z < 0 即 γ d − γ < 0 \frac{\partial \bar \theta}{\partial z}<0即\gamma_d - \gamma <0 zθˉ<0γdγ<0 :绝对不稳定
  • ∂ θ ˉ ∂ z > 0 但 ∂ θ ˉ s e ∂ z < 0 \frac{\partial \bar \theta}{\partial z}>0但\frac{\partial \bar \theta_{se}}{\partial z}<0 zθˉ>0zθˉse<0即假相当位温随高度降低,位温随高度升高,此时为条件性不稳定,即 γ m < Γ < γ d \gamma_m < \Gamma < \gamma_d γm<Γ<γd
  • ∂ θ ˉ s e ∂ z > 0 即 γ m − Γ > 0 \frac{\partial \bar \theta_{se}}{\partial z}>0即\gamma_m-\Gamma>0 zθˉse>0γmΓ>0为绝对稳定型

4.20.5 饱和但不含有液态水的气层稳定度

  • 饱和但不含有液态水的气层上升时是沿湿绝热线,下沉时则是沿干绝热线,因此稳定度要视扰动方向而定

4.20.6 绝对、条件、绝对不(重要,理解)

  • 绝对不稳定 γ > γ d \gamma > \gamma_d γ>γd
  • 绝对稳定 γ < γ m \gamma < \gamma_m γ<γm
  • 条件稳定 γ m < γ < γ d \gamma_m < \gamma < \gamma_d γm<γ<γd
    • 如果含有液态水,上升下沉都按湿绝热,那就是不稳定的
    • 如果饱和但是不含液态水,上升按湿绝热,是不稳定的,下沉按干绝热,是稳定的
    • 如果是未饱和,那就是稳定的
  • 条件稳定 γ = γ d \gamma = \gamma_d γ=γd:
    • 如果含有液态水,是不稳定的
    • 如果饱和但不含液态水,上升不稳定,下沉中性
    • 如果未饱和,则是中性的
  • 条件稳定 γ = γ m \gamma=\gamma_m γ=γm:
    • 如果含有液态水,是中性的
    • 如果饱和但不含有液态水,上升中性,下沉稳定
    • 如果未饱和则为稳定

4.21 气层不稳定能量(应该不考计算)

∫ z 0 z d w d t d z = ∫ z 0 z ( T v − T ˉ v T ˉ v ) g d z \int_{z_0}^z\frac{dw}{dt}dz=\int_{z_0}^z(\frac{T_v-\bar T_v}{\bar T_v})gdz z0zdtdwdz=z0z(TˉvTvTˉv)gdz
∫ z 0 z d w d t d z = ∫ z 0 z d w d t w d t = 1 2 ( w 2 − w 0 2 ) = ∫ z 0 z ( T v − T ˉ v T ˉ v ) g d z \int_{z_0}^z\frac{dw}{dt}dz=\int_{z_0}^z\frac{dw}{dt}wdt=\frac{1}{2}(w^2-w_0^2)=\int_{z_0}^z(\frac{T_v-\bar T_v}{\bar T_v})gdz z0zdtdwdz=z0zdtdwwdt=21(w2w02)=z0z(TˉvTvTˉv)gdz
左边是动能增量,右边是做的功;可见,浮力和重力合力做的功,从一个高度到另一个高度能做这么多功,根据功与能量的关系,说明储存了这么多的能量

  • 如果 ∫ z 0 z ( T v − T ˉ v T ˉ v ) g d z \int_{z_0}^z(\frac{T_v-\bar T_v}{\bar T_v})gdz z0z(TˉvTvTˉv)gdz>0,则表示气层对气块做正功,称气块具有不稳定能量
  • 反之气层对气块是稳定的,称气层具有负不稳定能量

4.22 位势稳定度(对流性不稳定——重点)

未饱和气层整层抬升的过程中,由于垂直方向空气湿度的差异会导致不同高度气块达到饱和先后的差异,对稳定度会有影响

下面假设在处置气层一定高度内为等温大气,但由于垂直方向湿度的差异,导致露点温度垂直方向有差异

4.22.1 位势不稳定(下湿上干)

  • 下湿上干的话低层的露点温度高于上层
  • 整层抬升的过程中,下层更快达到抬升凝结高度,之后沿湿绝热线上升
  • 而上层由于露点温度更低,沿干绝热上升时间更长,温度降低更多之后才达到抬升凝结高度
  • 这样整层抬升到之后,本来上下等温的气层会变成上方温度低,下方温度高
  • 原本 γ > γ m \gamma > \gamma_m γ>γm的经过抬升之后变成 γ > γ m \gamma>\gamma_m γ>γm,由稳定变为了不稳定
  • 也就是低层A点的假相当位温大于高层B点的假相当位温,就会发生位势不稳定

4.22.2 位势稳定(下干上湿)

  • 下干上湿,下层的露点温度低于上层,上层先到达抬升凝结高度
  • 整层抬升到,上层的温度就会比下层的高,形成逆温
  • 这样就变得更加稳定
    也就是低层A点的假相当位温小于高层B点的假相当位温,就会发生位势不稳定

五、动力学篇

5.1 惯性坐标系和旋转坐标系的关系

绝对速度和地球上观察到的相对速度的关系
V a = V + Ω × r V_a=V+\Omega \times r Va=V+Ω×r
Ω \Omega Ω是地球旋转角速度,r是物体重心到地球球心的距离
对于任意矢量A,均有以下式子成立
d a A d t = d A d t + Ω × A \frac{d_a A}{dt}=\frac{dA}{dt}+\Omega \times A dtdaA=dtdA+Ω×A
则将 A a A_a Aa带入得到
d a V a d t = d V a d t + Ω × V a ; ; ; V a = V + Ω × r \frac{d_a V_a}{dt}=\frac{dV_a}{dt}+\Omega \times V_a;;;V_a=V+\Omega \times r dtdaVa=dtdVa+Ω×Va;;;Va=V+Ω×r
联立得
d a V a d t = d V d t + 2 ( Ω × V ) + Ω 2 × r \frac{d_a V_a}{dt} = \frac{dV}{dt}+2(\Omega \times V)+\Omega^2 \times r dtdaVa=dtdV+2(Ω×V)+Ω2×r
左侧是:惯性坐标系下的绝对加速度;右一是地球上观测到的相对加速度,右二是科氏项,是由于物体相对地表运动引起的加速度;第三项是由于气块随地球旋转而具有的向心加速度

5.2 NS方程(重点)

地球表面,大气受到的真实力有:万有引力,气压梯度力,摩擦力
在惯性坐标系中,方程写为
d V a d t = − ∇ p ρ + g ∗ + F \frac{d V_a}{dt}=-\frac{\nabla p}{\rho}+g^*+F dtdVa=ρp+g+F
将绝对加速度换为相对加速度,左侧只保留相对加速度,等式写为
d V d t = − ∇ p ρ + g ∗ + F − 2 ( Ω × V ) − Ω 2 × r \frac{dV}{dt}=-\frac{\nabla p}{\rho}+g^*+F-2(\Omega \times V)-\Omega^2\times r dtdV=ρp+g+F2(Ω×V)Ω2×r
万有引力和离心力和为重力,便有
d V d t = − ∇ p ρ + g + F − 2 Ω × V \frac{dV}{dt}=-\frac{\nabla p}{\rho}+g+F-2\Omega \times V dtdV=ρp+g+F×V

5.3 局地变化和个别变化

个别变化展开为平流变化(F为气象要素物理量): d F d t = ∂ F ∂ t + V ⃗ ∇ F = ∂ F ∂ t + V ⃗ h ∇ F h + w ∂ T ∂ z \frac{dF}{dt}=\frac{\partial F}{\partial t}+\vec V\nabla F=\frac{\partial F}{\partial t}+\vec V_h\nabla F_h+w\frac{\partial T}{\partial z} dtdF=tF+V F=tF+V hFh+wzT

平时关注更多的是某地的局地变化,移向后变为 ∂ F ∂ t = d F d t − V ⃗ h ∇ F h − w ∂ T ∂ z \frac{\partial F}{\partial t}=\frac{dF}{dt}-\vec V_h\nabla F_h-w\frac{\partial T}{\partial z} tF=dtdFV hFhwzT

可以看到,某物理量的局地变化=个别变化-平流变化-对流变化

5.4 气压梯度力(重点,会考计算)

由于气压在空间分布不均匀而作用在单位质量空气上的力

5.4.1 推导

  • 假设从左向右为x轴正方向
  • A面受到的气压产生的力为 p δ y δ z p\delta y \delta z pδyδz
  • 沿着x方向有气压梯度的变化为 ∂ p ∂ x , 乘以 x 方向的一小段距离, B 处的气压为 − ( p + ∂ p ∂ x δ x ) δ y δ z \frac{\partial p}{\partial x},乘以x方向的一小段距离,B处的气压为-(p+\frac{\partial p}{\partial x}\delta x)\delta y \delta z xp,乘以x方向的一小段距离,B处的气压为(p+xpδx)δyδz
  • 两者相加就是x方向受到的气压产生的合力,为 − ∂ p ∂ x δ x δ y δ z -\frac{\partial p}{\partial x}\delta x \delta y \delta z xpδxδyδz
  • 同理可以推得y和z方向,得到物体受到的气压梯度力的合力为 − ∇ p δ x δ y δ z -\nabla p\delta x \delta y \delta z pδxδyδz
  • 如果考虑的是单位质量,体积 δ x δ y δ z = 1 ρ , 则气压梯度力表示为 G = − 1 ρ ∇ p \delta x \delta y \delta z=\frac{1}{\rho},则气压梯度力表示为G=-\frac{1}{\rho}\nabla p δxδyδz=ρ1,则气压梯度力表示为G=ρ1p
    在这里插入图片描述

5.4.2 性质

G = − 1 ρ ∇ p G=-\frac{1}{\rho}\nabla p G=ρ1p

  • 气压梯度力方向是从高压向低压
  • 大小与气压梯度成正比,与气体密度成反比

5.5 地转偏向力

由于在转动的非惯性参照系下自由运动的物体受到的一种使运动方向发生偏转的力,称为地转偏向力,它不是真实的力,是由于地球的自转产生的惯性力

5.5.1 理解

  • 想理解这个力,先要站在上帝视角看地球自转,如果有个炮弹从赤道向极点射去,在宇宙中来看,就是赤道向北极做一个抛物线射过去
    在这里插入图片描述

  • 但是地球上的人们是跟着地球自转的,在射出那个炮弹之后,会有那个炮弹在地球上人的右手边的错觉,这个运动的改变不是由于炮弹受到了外力,而是因为人在旋转参考系中产生的错觉,因此是一种惯性力
    在这里插入图片描述

5.5.2 公式

C ⃗ = − 2 Ω ⃗ × V ⃗ \vec C=-2\vec \Omega \times \vec V C =2Ω ×V
Ω \Omega Ω表示地球自转速度,该速度在x,y,z方向会有分量
之后再按叉乘的公式展开,就可以得到三个方向的地转偏向力

  • 在这里插入图片描述

在这里插入图片描述
φ:当地纬度 =>由于x方向和φ方向垂直,分量为0

  • 地转偏向力三个方向公式和向量形式
    在这里插入图片描述

5.5.3 地转参数

一般将 f = 2 Ω s i n ϕ f=2\Omega sin\phi f=sinϕ称为地转参数

  • 一般认为垂直速度相比水平速度小很多,略去x方向带有垂直速度的地转偏向力,则水平地转偏向力可以写成
    C ⃗ h = f V ⃗ h × k ⃗ \vec C_h=f\vec V_h \times \vec k C h=fV h×k

5.6 自然坐标系下的水平运动方程组

  • 自然坐标系下取切线方向为S,垂直于切向向左方向为n
    在这里插入图片描述

  • 由此速度分解则分解为,流线方向和切线方向的速度
    在这里插入图片描述

  • 两个方向加速度对应的运动方程
    在这里插入图片描述

5.7 连续方程

根据质量守恒,气块运动过程中尽管形状和体积会发生变化,但是其质量不变

5.7.1 速度散度

单位体积的体积变化率称为体胀速度,即速度散度

速度散度= ∇ ⋅ V ⃗ \nabla\cdot \vec V V
速度散度>0说明体积随时间变大,辐散;反之辐合

5.7.2 推导1:从质量守恒公式进行推导(拉格朗日观点)

质量不变即 d ( δ m ) d t = 0 = d ( ρ δ V ) d t \frac{d(\delta m)}{dt}=0=\frac{d (\rho \delta V)}{dt} dtd(δm)=0=dtd(ρδV)

将其展开得 ρ d δ V d t + δ V d ρ d t = 1 δ V d δ V d t + 1 ρ d ρ d t \rho \frac{d\delta V}{dt}+\delta V\frac{d \rho}{dt}=\frac{1}{\delta V}\frac{d\delta V}{dt}+\frac{1}{\rho}\frac{d \rho}{dt} ρdtdδV+δVdtdρ=δV1dtdδV+ρ1dtdρ

其中, 1 δ V d δ V d t \frac{1}{\delta V}\frac{d\delta V}{dt} δV1dtdδV就是单位体积的体积变化率,即体积散度

因此上式就可以写成 1 ρ d ρ d t + ∇ ⋅ V ⃗ = 0 \frac{1}{\rho}\frac{d \rho}{dt}+ \nabla\cdot \vec V=0 ρ1dtdρ+V =0即连续方程(个别变化,为拉格朗日观点的连续方程)

5.7.3 推导2:从固定点的质量流入率推导(欧拉观点)

在这里插入图片描述

  • 单位体积的净流入率=单位体积的质量增加率的公式体现

在这里插入图片描述


∂ ρ ∂ t + ∇ ⋅ ( ρ V ⃗ ) = 0 \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec V)=0 tρ+(ρV )=0(局地变化,为欧拉观点的连续方程)

5.7.4 格朗日观点连续方程意义

1 ρ d ρ d t + ∇ ⋅ V ⃗ = 0 \frac{1}{\rho}\frac{d \rho}{dt}+ \nabla\cdot \vec V=0 ρ1dtdρ+V =0

  • 质量不变的气块,当体积增大(辐散)的时候,密度随时间减小;体积减小(辐合)时,密度随时间增大

5.7.5 欧拉观点连续方程意义

∂ ρ ∂ t + ∇ ⋅ ( ρ V ⃗ ) = 0 \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec V)=0 tρ+(ρV )=0

  • 由于考虑的是单位体积,由 ρ = m / V , V = 1 , 则 ρ = m \rho = m/V,V=1,则\rho=m ρ=m/V,V=1,ρ=m
  • 所以 ∇ ⋅ ( ρ V ⃗ ) \nabla \cdot(\rho \vec V) (ρV )表示质量散度
  • 在固定点上,质量散度>0说明质量辐散,有质量流出,密度减小;反之增大

5.8 p坐标系与z坐标系转换关系(应该不重点,纯粹满足推导不同形式地转风使用)

由于p是z的单调单值函数,因此p与z可以互相表示,即可以写为p=p(x,y,z,t)或z=z(x,y,p,t)
对任意物理量有
F ( x , y , p , t ) = F ( x , y , z ( x , y , p , t ) , t ) F(x,y,p,t)=F(x,y,z(x,y,p,t),t) F(x,y,p,t)=F(x,y,z(x,y,p,t),t)
p不变的情况下求偏导
( ∂ F ∂ x ) p = ( ∂ F ∂ x ) z + ∂ F ∂ z ( ∂ z ∂ x ) p (\frac{\partial F}{\partial x})_p=(\frac{\partial F}{\partial x})_z+\frac{\partial F}{\partial z}(\frac{\partial z}{\partial x})_p (xF)p=(xF)z+zF(xz)p
将F换为气压则有
0 = ( ∂ P ∂ x ) z − ρ g ( ∂ z ∂ x ) p 0=(\frac{\partial P}{\partial x})_z-\rho g(\frac{\partial z}{\partial x})_p 0=(xP)zρg(xz)p
( ∂ P ∂ x ) z = ρ g ( ∂ z ∂ x ) p = ρ g d ϕ g d x (\frac{\partial P}{\partial x})_z=\rho g(\frac{\partial z}{\partial x})_p=\rho g\frac{d\phi}{gdx} (xP)z=ρg(xz)p=ρggdxdϕ
因此有
∇ p = ρ ∇ ϕ \nabla p=\rho \nabla \phi p=ρϕ

5.9 地转风(重点)

据观测,大尺度运动的水平速度量级远大于垂直运动量级,因此大尺度运动是接近水平和等速的,对自由大气可以忽略摩擦力

地转风:无加速度、无摩擦的空气水平运动称为地转风,是在水平气压梯度力和科氏力平衡时的风

V ⃗ g = − 1 f ρ ∇ h P × k ⃗ 即 \vec V_g=-\frac{1}{f\rho}\nabla_h P\times \vec k即 V g=fρ1hP×k

在这里插入图片描述
工作中分析高空等压面,使用位势梯度更多,由 ∇ h p = − ρ g 0 ∇ p H {\nabla_h p}{}=-\rho g_0 \nabla_p H hp=ρg0pH得到位势梯度的地转风公式(这儿是不是应该没负号)
V ⃗ g = − g 0 f ∇ p H × k ⃗ \vec V_g=-\frac{g_0}{f}\nabla_p H \times \vec k V g=fg0pH×k
将p的梯度与重力位势梯度关系带入后,可以得到p坐标系下的地转风方程
∇ p = ρ ∇ ϕ 带入得到 \nabla p=\rho \nabla_ \phi带入得到 p=ρϕ带入得到
V g = − 1 f ∇ ϕ × k V_g=-\frac{1}{f}\nabla_\phi \times k Vg=f1ϕ×k

性质

V ⃗ g = − 1 f ρ ∇ h P × k ⃗ \vec V_g=-\frac{1}{f\rho}\nabla_h P\times \vec k V g=fρ1hP×k

  • 地转风方向和气压梯度力方向垂直,即地转风和等压线垂直
  • 北半球f>0,右手法则可得地转风垂直气压梯度向右;南半球则指向气压梯度左侧
  • 背风而立,低压在左高压在右
  • 气压梯度力大小和纬度成反比,但只适用于中高纬度,因为低纬度地转偏向力很小,不符合地转平衡
  • 气压梯度力大小与空气密度成反比,因此一般高空的地转风强于地面的
  • 气压梯度力大小和气压梯度成正比
  • 由地转平衡,风场可以反映气压场,气压场也可以反映风场

在这里插入图片描述

5.10 梯度风

惯性力离心力,气压梯度力,地转偏向力三者平衡时的风,是无切向加速度,无摩擦的大气运动

由于不考虑切向加速度,则自然坐标系中只用考虑法向方向的方程,则有了梯度风方程
在这里插入图片描述
1/RT:曲率,气旋性曲率为正,反气旋为负

5.10.1 性质

  • 地转风与气压梯度方向也垂直
  • 地转风是水平气压梯度力,惯性离心力,水平地转偏向力三力平衡
  • 逆时针旋转的称为气旋式梯度风,顺时针的称为反气旋式梯度风
  • 定义气旋式梯度风的曲率为正
  • 北半球气旋中心一定是低压中心
    在这里插入图片描述

如果气旋中心是高压,将无法平衡
在这里插入图片描述


  • 反气旋中心可以是低压中心或者高压中心——不同尺度天气系统可能两种都存在
    在这里插入图片描述

在这里插入图片描述
两种都可以存在,但是高压中心的反气旋更常见,中心为低压在龙卷风中可能会出现

5.10.2 梯度风大小

解一元二次方程得

  • 解方程得梯度风风速为
    V c = − f R 2 ± f 2 R 2 4 − R ρ ∂ p ∂ n V_c=-\frac{fR}{2} \pm \sqrt{\frac{f^2R^2}{4}-\frac{R}{\rho}\frac{\partial p}{\partial n}} Vc=2fR±4f2R2ρRnp

  • 对于气旋,R>0 ,偏p/偏n<0,取减号风速才为正,有意义,同时V可以无穷大
    V c = − f R 2 + f 2 R 2 4 − R ρ ∂ p ∂ n V_c=-\frac{fR}{2} + \sqrt{\frac{f^2R^2}{4}-\frac{R}{\rho}\frac{\partial p}{\partial n}} Vc=2fR+4f2R2ρRnp

  • 对于正常反气旋 R<0 ,偏p/偏n>0,数学而言取正取负都有意义,但是如果取正则有气压梯度越大,风速越小的结论,不符合事实,因此应该取负,这样V有最大值
    V c = − f R 2 − f 2 R 2 4 − R ρ ∂ p ∂ n V_c=-\frac{fR}{2} - \sqrt{\frac{f^2R^2}{4}-\frac{R}{\rho}\frac{\partial p}{\partial n}} Vc=2fR4f2R2ρRnp

  • 对于反常反气旋(中间是低压的反气旋),则要取正才有意义

5.10.3 反气旋的最大风速性质(重点)

在这里插入图片描述
反气旋的最大气压梯度与纬度,空气密度,曲率大小成正比
因此在高纬度,冬季,曲率较小的地方高压极限气压更大
因此反气旋的外围曲率较小,等压线一般会更密集,气压梯度更大

5.10.4 地转风速和梯度风速大小比较

将自然坐标系下的地转风方程
V g = − 1 ρ f ∂ p ∂ n V_g=-\frac{1}{\rho f}\frac{\partial p}{\partial n} Vg=ρf1np
带入梯度风方程中的气压梯度项得到
V c 2 R + f V c = f V g \frac{V_c^2}{R}+fV_c=fV_g RVc2+fVc=fVg
同除以梯度风得到
V g V c = 1 + V c R f \frac{V_g}{V_c}=1+\frac{V_c}{Rf} VcVg=1+RfVc
可以看到,比值是否大于1,取决于曲率半径R是否>0

  • 气旋时R>0,地转风大于梯度风
  • 反气旋时R<0,地转风小于梯度风

对于中纬度大尺度系统,地转风和梯度风相差不大,可以用地转风代替梯度风,但低纬度必须用梯度风公式而不能用地转风

5.11 气柱温度与厚度的关系

由等温大气的压高公式,可以推得一段高度范围的平均温度
T ˉ = g 0 Δ H R d l n ( p 1 / p 2 ) \bar T=\frac{g_0 \Delta H}{R_d ln(p1/p2)} Tˉ=Rdln(p1/p2)g0ΔH
可以看出,如果压强差是确定的,气柱的平均气温取决于气柱高度

由此温度梯度就可以用厚度梯度来表示
− ∇ T ˉ = − g 0 ∇ ( Δ H ) R d l n ( p 1 / p 2 ) -\nabla\bar T=-\frac{g_0 \nabla(\Delta H)}{R_d ln(p1/p2)} Tˉ=Rdln(p1/p2)g0(ΔH)
因此在两个等压面之间,(p1和p2不变)越厚的地方平均温度越大

在这里插入图片描述

5.12 热成风(重点,23年计算题)

5.12.1 理解

  1. 首先假设地面有一层等压面是水平的 p 0 p_0 p0,由于与地面平行,因此气压的梯度在水平面上是0,因此没有地转风

在这里插入图片描述

  1. 之后往高层发现,发现p1层处,在A点上空的厚度大,B点上空厚度小,由上文说的气层厚度与平均温度的关系,可以知道气层厚度的区别是由于平均温度不同造成,A点上空的平均温度高于B点上空
    在这里插入图片描述
  2. 这样p0层就往冷区倾斜,这时候再计算气压梯度的时候发现高层存在气压梯度,有气压梯度力,存在地转风
  3. 这样低层地转风为0,高层不为零,高低层之间地转风产生差异,这个差异就叫热成风

5.12.2 公式推导(会推导不愁记不住,考了这题)

上面的理解表明,热成风就是不同高度地转风的差,因此求地转风就是求地转风随高度的变化,即上层地转风和下层地转风的矢量差

V ⃗ g = − g 0 f ∇ p H × k ⃗ \vec V_g=-\frac{g_0}{f}\nabla_p H \times \vec k V g=fg0pH×k
对气压求偏导
∂ V ⃗ g ∂ p = − g 0 f ∇ p ∂ H ⃗ ∂ p × k ⃗ \frac{\partial \vec V_g}{\partial p}=-\frac{g_0}{f}\nabla_p \frac{\partial \vec H}{\partial p} \times \vec k pV g=fg0ppH ×k
之后将位势高度表示的静力方程带入
d p d H = − ρ g 0 = − p g 0 R d T \frac{dp}{dH}=-\rho g_0=-\frac{pg_0}{R_dT} dHdp=ρg0=RdTpg0
得到
∂ V ⃗ g ∂ p = R d f p ∇ p T × k ⃗ \frac{\partial \vec V_g}{\partial p}=\frac{R_d}{fp}\nabla_p T \times \vec k pV g=fpRdpT×k
积分后得到地转风公式

V ⃗ T = − R d f l n p 1 p 2 ∇ p T ˉ × k ⃗ \vec V_T=-\frac{R_d}{f}ln\frac{p1}{p2}\nabla_p \bar T \times \vec k V T=fRdlnp2p1pTˉ×k
如果将压高公式带入,平均温度的梯度用气层厚度表示则有
V ⃗ T = − g 0 f ∇ p ( H 2 − H 1 ) × k ⃗ \vec V_T=-\frac{g_0}{f}\nabla_p (H_2-H_1) \times \vec k V T=fg0p(H2H1)×k
用重力位势表达则为
V ⃗ T = − 1 f ∇ p ( ϕ 2 − ϕ 1 ) × k ⃗ \vec V_T=-\frac{1}{f}\nabla_p (\phi_2-\phi_1) \times \vec k V T=f1p(ϕ2ϕ1)×k

5.12.3 性质

  • 两等压面之间只要存在温度梯度,就一定存在热成风
  • 叉乘判断方向,热成风方向与温度梯度(从高温到低温)垂直,即热成风方向为等温线方向
  • 南北半球f相反,因此北半球热成风方向在温度梯度右侧,南半球在左侧
  • 北半球,背热成风而立,低温在左高温在右

5.13 热成风随高度的变化

5.13.1 与等高线平行且低温对应低压

  • 同一高度上温度存在梯度,但是等温线与等高线平行,且低温地区对应低压,高温区对应高压
  • 这样热成风和地转风的方向是相同的,都是温度(位势高度)梯度垂直方向
  • 但由于空气密度随高度减小,地转风随高度风速增加在这里插入图片描述

5.13.2 与等高线平行且低温对应高压

  • 这种配置,地转风方向与地转风就是相反的
  • 就是随着高度的增加,风向会向相反方向增加
  • 风速还是随高度增加

在这里插入图片描述

5.13.3 冷平流型

  • 等压线和等温线是垂直的,且如图分配
    在这里插入图片描述
  • 由此看来,低层向南的地转风叠加上向右的热成风等于高层的风方向,可见随高度增加风向逆时针旋转,风速增加

5.13.4 暖平流型

  • 与上图的区别就是左侧为低压,右侧为高压,分析结论相反
  • 风随高度顺转,风速增加,有暖平流

5.13.5 小结

  • 温度梯度方向与位势高度梯度方向一致,则随高度风向不变化
  • 温度梯度方向与位势高度梯度方向想法,则随高度风向反向
  • 温度梯度与位势高度梯度方向垂直,看地转风从暖吹向冷or冷吹向暖,即为暖/冷平流
  • 风随高度逆转:冷平流
  • 风随高度顺转:暖平流

六、云降水篇

6.1 重力碰并

云滴大小不一,在重力场中降落速度也不相同,云滴之间的相互运动导致他们之间的相互碰撞,碰撞核合并的全过程称为重力碰并

假设云滴运动不偏离原来的铅直方向,以大滴中心为圆心,以R+r为半径的圆内所掠过的体积内,所有小云滴都将与大云滴相碰,单位时间内碰撞的小云滴个数为
n π ( R + r ) 2 [ v ( R ) − v ( r ) ] n \pi(R+r)^2[v(R)-v(r)] (R+r)2[v(R)v(r)]

但实际上运动时会产生扰流,只有一部分会发生碰撞,碰撞了也只有一部分会发生合并,碰撞系数和碰并系数分别为 E 1 和 E 2 E_1和E_2 E1E2
E 1 E 2 π n ( R + r ) 2 [ v ( R ) − v ( r ) ] , 将 E 1 E 2 称为碰并系数 E ( R , r ) E_1E_2\pi n(R+r)^2[v(R)-v(r)],将E_1E_2称为碰并系数E(R,r) E1E2πn(R+r)2[v(R)v(r)],E1E2称为碰并系数E(R,r)
d M d t = E 1 E 2 π n m ( R + r ) 2 [ v ( R ) − v ( r ) ] \frac{dM}{dt}=E_1E_2\pi nm(R+r)^2[v(R)-v(r)] dtdM=E1E2πnm(R+r)2[v(R)v(r)]
其中m是小云滴的质量,mn就是质量*个数,M是大云滴的质量

  • 19
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值