零、前言
本人为24考研人,一开始想考中山大学,后来改考国防科技大学,最终总分390,因为一直有用博客做笔记的习惯,考后打算将考研期间的复习笔记无偿分享出来,因为之前在一些网站上买的资料太垃圾了,又贵又垃圾实在看不惯他们,还不如自己的笔记,买资料也建议看看有无直系学长总结的资料卖,就算要钱卖的也是干货和对学弟学妹的关心,我就很幸运遇到一个真心想帮学弟学妹在中大的学长
这个系列博客包含南信大大气物理学院,中山大学或国防科技大学0706大气科学研究生初试中超全知识点,三所学校所考内容参考书目相同,但考试题型不同,国防科技大学会考计算和推导,因此南信大、中大的考试内容是国防科大考试的子集,一篇顶三校考纲
各个知识点我会将重点标出以便大家复习,标了重点的一定要回参考书目中自己再弄懂一遍
文章内容大部分来自本人啃书得到,少部分来自购买资料,基本纯手敲
如果有疏漏和错误敬请在评论中指出,欢迎大家批评指正
这个公式推导和计算题考点真的花了很多心思,显示Markdown有25000字,包含我认为每一章可能考到的推导和计算题考点,最后考试的时候计算题虽然不难但做的时候信心也没这么足,还是要准备万全一些!
一、湿度篇
1.1 各个湿度参量
- 绝对湿度(absolute_humidity) ρ v = m v V \rho_v=\frac{m_v}{V} ρv=Vmv:湿空气的水汽分质量 / 气块总体积
- 混合比(mixing_ratio) r = m v m d r=\frac{m_v}{m_d} r=mdmv:湿空气质量 / 干空气质量
- 比湿(specific_humidity) q = m v m = m v m d + m v q = \frac{m_v}{m} = \frac{m_v}{m_d+m_v} q=mmv=md+mvmv:湿空气的质量 / 空气总质量;实际大气中由于湿空气质量远小于干空气质量,因此比湿约等于混合比
- 相对湿度(relative_humidity) f = e E f=\frac{e}{E} f=Ee:在一定的温度和压强下,实际水汽含量和该温度下饱和的水汽含量的比值,用百分比表示
1.2 理想气体状态方程
- 普适气体常数R*=8.3145 J/(K*mol)
- 比气体常数 R = R ∗ M ˉ R=\frac{R^*}{\bar M} R=MˉR∗, R d 为干空气比气体常数, R v 为水汽比气体常数(是水汽而不是湿空气), R_d为干空气比气体常数,R_v为水汽比气体常数(是水汽而不是湿空气), Rd为干空气比气体常数,Rv为水汽比气体常数(是水汽而不是湿空气),
P V = m M ˉ R ∗ T PV=\frac{m}{\bar M}R^*T PV=MˉmR∗T
P V = m R T PV={m}RT PV=mRT
P V = n R ∗ T PV=nR^*T PV=nR∗T
P = ρ R T P=\rho RT P=ρRT
P α = R T , α = 1 / ρ P\alpha = RT, \alpha=1 / \rho Pα=RT,α=1/ρ
1.3 ϵ ≈ \epsilon \approx ϵ≈ 0.622
R d R v = R ∗ / M ˉ d R ∗ / M ˉ v = M ˉ v M ˉ d ≈ 0.622 \frac{R_d}{R_v}=\frac{R^*/\bar M_d}{R^*/\bar M_v}=\frac{\bar M_v}{\bar M_d}\approx 0.622 RvRd=R∗/MˉvR∗/Mˉd=MˉdMˉv≈0.622
1.4 湿度参量之间的换算
1.4.1 相对湿度
r = m v m d (单位体积) = ρ v ρ d = e / R v T ( p − e ) R d T = R d R v e p − e ≈ 0.622 e p − e r=\frac{m_v}{m_d}(单位体积)=\frac{\rho_v}{\rho_d}=\frac{e/R_vT}{(p-e)R_dT}=\frac{R_d}{R_v}\frac{e}{p-e}\approx0.622\frac{e}{p-e} r=mdmv(单位体积)=ρdρv=(p−e)RdTe/RvT=RvRdp−ee≈0.622p−ee
1.4.2 比湿
q = r 1 + r , 代入上面比湿得到 q = 0.622 e p − 0.378 e q=\frac{r}{1+r},代入上面比湿得到q=0.622\frac{e}{p-0.378e} q=1+rr,代入上面比湿得到q=0.622p−0.378ee
考试中可以使用
r ≈ q ≈ 0.622 e p 单位 ( g / g ) r\approx q \approx0.622 \frac{e}{p}单位(g/g) r≈q≈0.622pe单位(g/g)
1.4.3 绝对湿度
由 ρ = p / R T ,具体到湿空气就是 ρ v = e R v T = 0.622 e R d T 由\rho =p/RT,具体到湿空气就是\rho_v=\frac{e}{R_v T}=0.622\frac{e}{R_d T} 由ρ=p/RT,具体到湿空气就是ρv=RvTe=0.622RdTe
需要注意的是,如果e用的是hPa,最后要乘以 1 0 5 10^5 105得到的单位才是 g / m 3 g/m^3 g/m3,这一点在18年真题中就考了,一定要自己根据量纲推到一次最后的单位量级
1.5 湿空气的摩尔质量推导(虚温推导)
M ˉ a = m v + m d n v + n d (各部分质量和物质的量之比) = m v + m d m v M v + m d M d (将物质的量用质量和摩尔质量表示) \bar M_a = \frac{m_v+m_d}{n_v+n_d}(各部分质量和物质的量之比)=\frac{m_v+m_d}{\frac{m_v}{M_v}+\frac{m_d}{M_d}}(将物质的量用质量和摩尔质量表示) Mˉa=nv+ndmv+md(各部分质量和物质的量之比)=Mvmv+Mdmdmv+md(将物质的量用质量和摩尔质量表示)
之后分子分母同除总质量 = 1 q M v + 1 − q M d 之后分子分母同除总质量=\frac{1}{\frac{q}{M_v}+\frac{1-q}{M_d}} 之后分子分母同除总质量=Mvq+Md1−q1
分子分母同乘 M d 得到 M ˉ a = M d M d M v q + 1 − q ≈ M d 1 + 0.608 q 分子分母同乘M_d得到\bar M_a=\frac{M_d}{\frac{M_d}{M_v}q+1-q}\approx \frac{M_d}{1+0.608q} 分子分母同乘Md得到Mˉa=MvMdq+1−qMd≈1+0.608qMd
有了湿空气的平均摩尔质量,就可以计算出湿空气比气体常数 R = R ∗ M d ( 1 + 0.608 q ) 有了湿空气的平均摩尔质量,就可以计算出湿空气比气体常数R=\frac{R^*}{M_d}(1+0.608q) 有了湿空气的平均摩尔质量,就可以计算出湿空气比气体常数R=MdR∗(1+0.608q)
这样就可以用干空气的比气体常数加上一个与湿度q有关的量表示湿空气的状态方程,将(1+0.608q)T共同组成虚温 T v T_v Tv,可以得到湿空气的状态方程
P = ρ R d ( 1 + 0.608 q ) T = ρ R d T v P=\rho R_d(1+0.608q)T=\rho R_d T_v P=ρRd(1+0.608q)T=ρRdTv
二、压高公式篇
2.1 微分形式
d p = − ρ g d z = − p g R d T v d z dp=-\rho gdz=-\frac{pg}{R_d T_v}dz dp=−ρgdz=−RdTvpgdz
2.2 积分形式
微分方程,两侧积分后代入上下限 P 1 , P 2 得到 P 2 = P 1 e x p ( − 1 R d ∫ g T v d z ) 微分方程,两侧积分后代入上下限P_1,P_2得到P_2=P_1 exp(-\frac{1}{R_d}\int\frac{g}{T_v}dz) 微分方程,两侧积分后代入上下限P1,P2得到P2=P1exp(−Rd1∫Tvgdz)
2.3 均质大气
均质大气的密度不随高度变化,直接将原始方程进行积分
p 2 − p 1 = − ρ g ( z 2 − z 1 ) p_2-p_1=-\rho g(z_2-z_1) p2−p1=−ρg(z2−z1)
气压随高度线性递减
2.3.1 均质大气减温率
由状态方程 p = ρ R T 两侧对 z 取微分 d p d z = ρ R d T d z = − ρ g 由状态方程p=\rho RT 两侧对z取微分 \frac{dp}{dz}=\rho R \frac{dT}{dz}=-\rho g 由状态方程p=ρRT两侧对z取微分dzdp=ρRdzdT=−ρg
约去后得到 d T d z = − ρ g ,得到减温率 Γ = ρ g 约去后得到\frac{dT}{dz}=-\frac{\rho}{g},得到减温率\Gamma=\frac{\rho}{g} 约去后得到dzdT=−gρ,得到减温率Γ=gρ
注意减温率在随高度降温情况下是个正数
这个减温率也成为自由对流减温率
2.4 等温大气
气温随高度不改变的大气称为等温大气
z 2 − z 1 = − R d T g l n p 2 p 1 即 p 2 = p 1 e x p [ − g R T ( z 2 − z 1 ) ] z_2-z_1=-\frac{R_dT}{g}ln\frac{p_2}{p_1}即p_2=p_1exp[-\frac{g}{RT}(z_2-z_1)] z2−z1=−gRdTlnp1p2即p2=p1exp[−RTg(z2−z1)]
当进行气压站气压订正到海平面气压的时候,使用等温大气的压高公式
2.5 多元大气(高数复习到这阶段时候一定要亲自积分一次)
- 温度随高度线性变化,即 γ = ∂ T ∂ z = c o n s t 为常数 \gamma = \frac{\partial T}{\partial z}=const为常数 γ=∂z∂T=const为常数
- 将 T 2 = T 1 − γ z T_2=T_1-\gamma z T2=T1−γz带入 p 2 = p 1 e x p ( − ∫ z 1 z 2 g R d T d z ) p_2=p_1exp(-\int_{z1}^{z2}\frac{g}{R_dT}dz) p2=p1exp(−∫z1z2RdTgdz)积分得到 p 2 = p 1 [ 1 − γ ( z 2 − z 1 ) T 1 ] g γ R d p_2=p_1[1-\frac{\gamma(z_2-z_1)}{T1}]^{\frac{g}{\gamma R_d}} p2=p1[1−T1γ(z2−z1)]γRdg
2.6 大气标高
当气压降低到原始的1/e时的高度
l n p 2 p 1 = l n e − 1 = − 1 = − 1 R d ∫ g T v d z ln\frac{p_2}{p_1}=lne^{-1}=-1=-\frac{1}{R_d}\int\frac{g}{T_v}dz lnp1p2=lne−1=−1=−Rd1∫Tvgdz
根据不同的大气假设,可以将积分算出来,反解出对应的Z,就是大气标高
2.7 重力位势
Φ \Phi Φ表示,即单位质量的重力势能,单位J/kg
d Φ = g d z d \Phi = gdz dΦ=gdz 即 Φ = ∫ 0 z g d z 即\Phi=\int_0^zgdz 即Φ=∫0zgdz
2.8 位势高度
H = Φ ( z ) g 0 = 1 g 0 ∫ 0 z g d z H=\frac{\Phi(z)}{g_0}=\frac{1}{g_0}\int_0^zgdz H=g0Φ(z)=g01∫0zgdz
单位为位势米gpm,因此位势高度就是位势 / 地球平均重力加速度
- 理解的关键在于 g 0 g_0 g0是作为一个常数,跟不带下标的g要进行区分
- 位势高度的, g 0 g_0 g0取常数为9.80665J/(kg*gpm),为地球平均重力加速度
- 上式表达式中的积分中的g是随高度减小的,因此如果H较高的时候,g< g 0 g_0 g0,因此在高空位势高度是低于几何高度的
2.9 用位势高度表示的静力学方程
H = Φ ( z ) g 0 得到 g 0 d H = d Φ = g d z H=\frac{\Phi(z)}{g_0}得到g_0dH=d\Phi=gdz H=g0Φ(z)得到g0dH=dΦ=gdz
代入压高公式
d p = − ρ g d z = − ρ g 0 d H dp=-\rho gdz = -\rho g_0dH dp=−ρgdz=−ρg0dH即
d p d H = − ρ g 0 \frac{dp}{dH}=-\rho g_0 dHdp=−ρg0
对于等温大气,压高公式变为
p 2 = p 1 e x p [ − g 0 R T ( H 2 − H 1 ) ] p_2=p_1exp[-\frac{g_0}{RT}(H_2-H_1)] p2=p1exp[−RTg0(H2−H1)]
对于多元大气,压高公式变为
p 2 = p 1 [ 1 − γ ( H 2 − H 1 ) T 1 ] g 0 γ R d p_2=p_1[1-\frac{\gamma(H_2-H_1)}{T1}]^{\frac{g_0}{\gamma R_d}} p2=p1[1−T1γ(H2−H1)]γRdg0
(基本就是g变为 g 0 g_0 g0,Z变为H)
2.10 垂直气压梯度
− d p d z -\frac{dp}{dz} −dzdp
2.11 单位气压高度差
− d z d p -\frac{dz}{dp} −dpdz
2.12 大气质量的计算
单位面积下, m = ∫ ρ d z 单位面积下,m=\int \rho dz 单位面积下,m=∫</