大气探测复试复习笔记——第四章:被动遥感

零、被动遥感

被动遥感指接收大气自身发射的电磁辐射或反射自然源来获取大气信息,由于没有发射部分,可以节省能源,缩小体积,适合以卫星为观测平台

  • 根据接收的波段不同,可分为可见光遥感、红外遥感、微波遥感
  • 按观测不同可分为:卫星遥感、空基遥感、地基遥感等

一、辐射

1.1 辐射能(Q)

电磁辐射所携带的能量,单位J

1.2 辐射通量(F)

指辐射在单位时间内通过空间某一表面的辐射能,就是以辐射形式发射,吸收,传递的功率,用单位J/s或W表示

1.3 辐射通量密度(E)

单位表面积上发射或截获的辐射通量,单位为 W / m 2 , E = d F d A W/m^2,E=\frac{dF}{dA} W/m2,E=dAdF

  • 一般把接收面上的辐射通量密度叫做辐照度,发射出去的通量密度称为辐出度

1.4 立体角

定义:锥体所拦截的球面积半径的平方之比
单位:sr(球面度)
一个球面的立体角为 4 π 4\pi 4π

在这里插入图片描述
在这里插入图片描述

球坐标系下的立体角计算

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.5 辐射强度(I)

在给定方向单位立体角内发射或接收到的辐射通量称为辐射强度,用公式 d F d Ω \frac{dF}{d\Omega} dΩdF表示,单位为 W / S r W/S_r W/Sr

1.6 辐亮度(辐射率)(L)

在发射体或接收体表面某一面元处的垂直于任意给定方向单位面积上的辐射强度,称为辐亮度或辐射率,记为L,单位是 W / ( S r . m 2 ) W/(S_r . m^2) W/(Sr.m2)
若是单色辐亮度,加上单位波长 W / ( S r . m 2 . μ m ) W/(S_r . m^2.\mu m) W/(Sr.m2.μm)

L = d I d A c o s θ = 1 c o s θ d E d Ω L=\frac{dI}{dAcos\theta}= \frac{1}{cos \theta}\frac{dE}{d\Omega} L=dAcosθdI=cosθ1dΩdE等于是垂直与该面积方向的单位面积的辐射强度

  • 如果从表面元上发射的辐亮度是各向同性的,这种辐射源叫做朗伯体
  • 辐射强度和辐亮度都是对于漫射辐射而言的,对于平行辐射这种定义没有定义,因为平行辐射无法计算立体角
  • 太阳对地球的张角非常小,很多实际问题中将太阳的直射光辐射看作是平行辐射

1.7 单色辐亮度

  • 上述的物理量其实与波长或频率都有关
  • 单色辐亮度 L λ L_\lambda Lλ单位为 W / ( S r . m 2 . μ m ) W/(S_r.m^2.\mu m) W/(Sr.m2.μm)
  • 在一定波长范围的辐亮度可以写成 L = ∫ λ 1 λ 2 L λ d λ L=\int_{\lambda _1}^{\lambda _2}L_\lambda d\lambda L=λ1λ2Lλdλ

1.8 黑体、灰体、选择性辐射体

  • 黑体:某一物体在任何温度下,对任意方向和波长的吸收率或发射率都等于1
  • 灰体:指物体的吸收率或发射率为与波长无关且小于1 的常数
  • 选择性辐射体:物体的吸收率或发射率随波长改变

1.9 发射率 ϵ \epsilon ϵ

辐射体的辐射通量密度与相同温度黑体的辐射通量密度之比

在这里插入图片描述

1.10 黑体辐射定律(普朗克定律)

在这里插入图片描述

  • B λ B_\lambda Bλ为单色辐亮度,h为普朗克常数,k为玻尔兹曼常数, λ \lambda λ为波长

在这里插入图片描述

黑体光谱特点

  • 理论上任何温度的绝对黑体都放射从0到无穷大波段的辐射

  • 黑体的温度越低,其积分辐出度会减小

  • 黑体温度越高,其辐射峰值对应波长会变短

  • 温度高的黑体比温度低的黑体在各个波段的辐亮度都要大

1.11 维恩位移定律

通过对普朗克函数对波长求偏导,发现对于确定的温度,其辐亮度峰值对应的波长为 λ m a x = k w T = 2897.8 T \lambda_{max}=\frac{k_w}{T}=\frac{2897.8}{T} λmax=Tkw=T2897.8,波长单位为微米, k w k_w kw为韦恩常数


1.12 史蒂芬玻尔兹曼定律

通过对普朗克函数积分,发现辐出度与温度的四次方成正比
E b ( T ) = σ T 4 E_b(T)=\sigma T^4 Eb(T)=σT4,其中 σ \sigma σ就是史蒂芬玻尔兹曼常数, σ = 5.670373 × 1 0 − 8 W / ( m 2 K 4 ) \sigma=5.670373\times10^{-8} W/(m^2 K^4) σ=5.670373×108W/(m2K4)

1.13 基尔霍夫定律

  • 首先,如果将一个吸收能力强和一个吸收能力弱的物体放在一起,经过足够长的时间两者最终会达到辐射平衡,即温度相同
  • 因此吸收能力强的,只有辐射能力也强;吸收能力弱的,只有辐射能力也弱才可能达到平衡
  • 因此,有如下推论
    F 1 A 1 = F 2 A 2 = f ( T , λ ) \frac{F_1}{A_1}=\frac{F_2}{A_2}=f(T,\lambda) A1F1=A2F2=f(T,λ)即两者比值相同只与温度和波长有关的普适函数
  • 再者,黑体的吸收率为1,即A=1,那么其辐出度F就是该普适函数
  • 因此,任何物体辐出度(发射率)和吸收率之比就等于该温度下黑体的发射率
  • 移项一下就是——该物体的发射率 / 该温度下黑体的发射率=吸收率

二、气象卫星

2.1 分类

  • 按轨道分类:圆形近极地太阳同步轨道卫星(极轨卫星),地球同步轨道卫星(静止卫星)
  • NOAA极轨卫星,GOES静止卫星,FY-1/3是机柜,FY-2/4是静止

2.2 卫星的运动方程

  • 假定:地球是均值理想球体,卫星可看作质点,且卫星的质量很小,对地球的影响可忽略
    卫星收到的向心力表达式
    F ( r ) = − G M m r 2 = − u m r 2 , r 为卫星到地心距离, u 为开普勒常数 F(r)=-\frac{GMm}{r^2}=-\frac{um}{r^2},r为卫星到地心距离,u为开普勒常数 F(r)=r2GMm=r2umr为卫星到地心距离,u为开普勒常数
    卫星运动方程,卫星轨道平面通过地球中心
    在这里插入图片描述

2.3 卫星轨道参数

  • 环绕速度:卫星作圆轨道运动具有的速度
    向心力由万有引力提供 V = u h + R 向心力由万有引力提供 V=\sqrt{\frac{u}{h+R}} 向心力由万有引力提供V=h+Ru
  • 周期:卫星沿轨道绕地球飞行一周所需要的时间
    T = 2 π r / V = s π ( h + R ) 3 u T=2\pi r/V = s\pi\sqrt{\frac{(h+R)^3}{u}} T=2πr/V=sπu(h+R)3
  • 极轨卫星的轨道高度约为870km,周期102.14min;而静止卫星的轨道高度约为35800km,周期24h
  • 星下点:卫星与地球中心连线在地球表面的交点,地球的自转和卫星的运动使得星下点在地球表面形成一条连续的轨迹,该轨迹称为星下点轨迹
  • 升/降交点:卫星由南向北运行与赤道平面的交点称为升交点,自北向南则为降交点
  • 上/下轨道:由南向北运动的轨道称为上轨道,反之下轨道
  • 轨道倾角:由赤道平面逆时针向上轨道平面的夹角称为轨道倾角;
  • 当轨道倾角为0或180度时,卫星在赤道上空向东/西运行,这种轨道称之为静止轨道
  • 当轨道倾角为90或270度时卫星通过南北两极,称为极轨道
  • 倾角为0-90度为顺行轨道,倾角为90~180度则为逆行轨道
  • 截距:卫星绕地球公转同时,地球不停自西向东旋转,卫星绕地球旋转一周后,地球相对于卫星要转过一定度数,这个度数称为截距,就是连续两次升交点之间的经度差
  • 由于地球每小时转过15度,因此截距可以表示为
    L = T × 15 , L 截距单位为度, T 单位为小时 L=T\times 15,L截距单位为度,T单位为小时 L=T×15L截距单位为度,T单位为小时
    则有
    λ n + 1 = λ n + − L ,升交点位于西经取 + ,东经取 − \lambda_{n+1} = \lambda_n +- L,升交点位于西经取+,东经取- λn+1=λn+L,升交点位于西经取+,东经取
  • 卫星的摄动:卫星在运动过程中收到地球不规则球体及质量分布不均匀以及太阳或月球等星体的引力等等力导致轨道参数的变化与理想情况下产生的偏差

2.4 卫星姿态的控制

卫星姿态指卫星在空间相对于轨道平面、地球表面或任何坐标系的固定取向

卫星姿态的控制有:自旋稳定,三轴定向稳定,重力梯度稳定等方式

  • 自旋稳定:
  • 平动式:自转轴平行轨道平面,仪器窗在底面
  • 滚动式:自转轴垂直轨道平面,仪器窗在侧面
  • 三轴定向稳定:依靠一系列装置,使卫星在俯仰轴、横滚轴、偏航轴三个方向保持稳定取向,是目前的趋势

2.5 圆形近极地太阳同步轨道

  • 偏心率为0,赤道倾角接近90度,其轨道平面与太阳光线保持固定交角
  • 由于地球绕太阳公转,等于卫星也要绕太阳公转,一年365天,一年期间卫星轨道也旋转了360度,因此每天轨道平面转动 360 / 365 ≈ 1 ° / d a y 360/365 \approx1\degree/day 360/3651°/day
  • 由于轨道旋转,卫星每天会提早4min出现于同一观测点
  • 同时由于地球不是个理想的球体,在赤道微隆,因此会长生一个额外的引力,这个引力的作用下产生一个力矩,会使卫星轨道平面绕地球自转轴缓慢转动,这个卫星轨道平面绕地球自转轴旋转的现象称为卫星轨道平面的进动

如何实现太阳同步:

  • 太阳光对卫星轨道平面的照射方向每天转过1度,相当于卫星轨道平面每天沿顺时针方向转过1度,为了保持不变需要使卫星轨道平面逆时针旋转,才可能抵消由于公转造成的影响
  • 需要卫星轨道的进动,且方向为自西向东的进动,需要轨道倾角大于90度的逆行轨道
  • 通过倾角和卫星高度的匹配,可以达到效果

极轨卫星的特点:

  • 探测范围较大可实现全球探测
  • 每天对某地的观测能得到大致相同的光照条件
  • 轨道低,分辨率高
  • 时间分辨率低,一天只能有两次过顶探测

2.6 地球同步轨道

  • 轨道平面与赤道平面重合,且运动方向与地球自转方向一致
  • 根据周期与地球自转周期一致,可以计算h=35860km

特点:

  • 观测范围面积达,一颗卫星可以观测全球1/4面积
  • 时间分辨率高,可实现连续观测
  • 无法对两极观测,空间分辨率较低

2.7 气象卫星的遥感仪器

  • 主动遥感仪器主要包括:微波测雨雷达,毫米波风廓线雷达等等

  • 被动遥感:主要为辐射仪

辐射仪

  • 可分为:辐射成像仪、大气垂直探测器、其他用途探测仪器
  • 辐射成像仪又可分为:可见光红外扫描辐射计、微波扫描辐射成像仪
  • 可见光红外扫描辐射计可用于获取云、植被、冰雪和海面温度分布,进行森林火灾,沙尘暴和干旱检测
  • 微波成像仪可用于获取降水量、土壤湿度、洋面风速、海冰形态、云、水体信息的获取
  • 大气垂直探测器也可分为红外的和微波的;红外大气垂直探测器主要用于获取晴空区的大气温度、湿度廓线、地表温度、云性质等;微波大气垂直探测器用于获取大气温度、湿度廓线、云中液态水含量等信息
    在这里插入图片描述

三、 可见光遥感

利用可见光波段的扫描辐射计获取白天可见光云图

3.1 可见光遥感方程

  • 气象卫星在可见光波段选用的光谱通道有:0.52-0.75微米,0.58-0.68微米

  • 到达地面垂直方向的辐照度为
    E λ = B λ ( T s ) ω s c o s θ × τ ( θ ) E_\lambda = B_\lambda(T_s)\omega_s cos\theta\times \tau(\theta) Eλ=Bλ(Ts)ωscosθ×τ(θ)
    E是到达地面的辐照度,B是太阳辐射率, ω \omega ω是太阳所张立体角, θ \theta θ是太阳天顶角, τ \tau τ是此时的透过率

  • 假设地面,云为各向同性,则由朗伯体的辐亮度与辐出度的关系得到反射太阳辐射率
    L λ = E λ π r a ,其中 r a 为云面或地面反射率 L_\lambda=\frac{E_\lambda}{\pi}r_a,其中r_a为云面或地面反射率 Lλ=πEλra,其中ra为云面或地面反射率

  • 反射到卫星接收的辐射率(可见光遥感方程)就为
    L λ = E λ π r a τ ( θ 卫 ) = B λ ( T s ) ω s π c o s θ s τ λ ( θ s ) τ λ ( θ 卫 ) r a L_\lambda=\frac{E_\lambda}{\pi}r_a \tau(\theta_卫)=\frac{B_\lambda(T_s)\omega_s}{\pi}cos\theta_s \tau_\lambda(\theta_s)\tau_\lambda(\theta_卫)r_a Lλ=πEλraτ(θ)=πBλ(Ts)ωscosθsτλ(θs)τλ(θ)ra

3.2 可见光云图成像原理

  • 在可见光区可近似认为透过率为1
  • 由公式可以发现,对于可见光,接收到的辐射率正比于太阳高度角,反射率
  • 在图像处理时,根据接收到的辐射率定义照片色彩,L越大定义颜色越白,越小越黑
  • 同时反射率与波长有关,因此同一物体用不同波长探测,其色调也会有差异

四、红外遥感

  • 地球辐射温度约为300K,峰值在10微米附近的红外区域
  • 大气对红外波段的散射是可以忽略不计的
  • 但大气各成分会有吸收光谱,比如水汽,二氧化碳,臭氧都有多个强吸收带,由于其强吸收,由基尔霍夫定律,这些气体也会有强烈的辐射
  • 在红外遥感中一般将地表作为黑体处理
  • 在遥感中,云的红外辐射特征与云滴大小、含水量、云层厚度密切相关;低云含水量大,云滴较大且较厚,比辐射率在0.9-1;对高云,云层较稀薄,云滴小含水量低,比辐射率在0.4-0.95

4.1 红外遥感方程

卫星接收到的红外辐射来源有:

  • 云和地面发射的红外辐射
  • 大气中各气体发射辐射
  • 地面和云反射的大气向下红外辐射
  • 地面和云面反射的太阳辐射
  • 大气对太阳辐射的散射辐射

只考虑吸收和发射而不考虑散射的情况下
d L ( z , θ ) = [ − L ( z , θ ) + B ( T ) ] k ( z ) ρ ⋅ s e c θ d z dL(z,\theta) = [-L(z,\theta)+B(T)]k(z)\rho \cdot sec\theta dz dL(z,θ)=[L(z,θ)+B(T)]k(z)ρsecθdz
透过率为
τ = e x p ( − s e c θ ∫ z ∞ ρ k ( z ) d z ) \tau = exp(-sec\theta \int_z^{\infty}\rho k(z)dz) τ=exp(secθzρk(z)dz)
对透过率对z求微分得到
∂ τ = τ s e c θ ρ k ∂ z \partial\tau = \tau sec\theta \rho k \partial z τ=τsecθρkz
也就是
∂ τ ∂ z = ρ k τ s e c θ \frac{\partial \tau}{\partial z}=\rho k\tau sec\theta zτ=ρkτsecθ
将这个代入上式得到
d L ( z , θ ) = [ − L ( z , θ ) + B ( T ) ] d τ ( z , θ ) τ ( z , θ ) dL(z,\theta) = [-L(z,\theta)+B(T)]\frac{d\tau(z,\theta)}{\tau(z,\theta)} dL(z,θ)=[L(z,θ)+B(T)]τ(z,θ)dτ(z,θ)
积分后得到
L ( ∞ , θ ) = k s B ( T s ) τ ( 0 , θ ) + ∫ 0 ∞ B ( T ) ∂ τ ( 0 , θ ) ∂ z d z L(\infty,\theta)=k_sB(T_s)\tau(0,\theta)+\int_0^{\infty}B(T)\frac{\partial \tau(0,\theta)}{\partial z}dz L(,θ)=ksB(Ts)τ(0,θ)+0B(T)zτ(0,θ)dz

  • 第一项的下标s表示surface,为地面或云顶;表示的意义是将其看成灰体,k为吸收系数,因此发射率就为 k s B ( T s ) k_sB(T_s) ksB(Ts),再乘上地面到卫星的透过率
  • 第二项表示从地面或云面发射的红外辐射(一边发射一边经过剩下的距离会衰减到达卫星)
  • 实际上L,k, τ \tau τ均与波长有关,跟波长相关下标懒得写了

4.2 红外云图成像原理

  • 选择红外窗区经过处理就可以得到红外云图,此时认为透过率为1,红外传输方程简化为
    L ( ∞ , θ ) = k s B ( T s ) L(\infty, \theta)=k_sB(T_s) L(,θ)=ksB(Ts)
    若将地面,云看作黑体,则k为1,观测到的辐射率就是物体由普朗克函数导出的辐亮度

对所有波长进行积分(这里用波数v表示波长相关信息)
L v ( ∞ , θ ) = ∫ v 1 v 2 B v ( T s ) d v L_v(\infty, \theta)=\int_{v_1}^{v_2}B_v(T_s)dv Lv(,θ)=v1v2Bv(Ts)dv
若用辐射通量表示
Φ ( θ ) = ∫ v 1 v 2 B v ( T s ) c o s θ Δ Ω Δ S d v , Δ Σ 为卫星张角, D e l t a S 为观测的地表面积 \Phi(\theta) = \int_{v_1}^{v_2}B_v(T_s)cos\theta \Delta \Omega \Delta Sdv,\Delta \Sigma为卫星张角,Delta S为观测的地表面积 Φ(θ)=v1v2Bv(Ts)cosθΔΩΔSdvΔΣ为卫星张角,DeltaS为观测的地表面积

但实际上所有物体的比辐射率均小于1,因此卫星接收到的辐射推算出的温度比实际目标物的温度小,一般要加5-10K才等于实际温度


在图像颜色处理方面,温度越高颜色越黑,温度越低颜色越白

因此云越高,云顶温度越低,色调越白

4.3 红外遥感大气温度廓线

如果卫星测量的某一波长的辐射来自某一高度,而与其他高度上的辐射无关,则可以得到波长与高度间存在的一一对应的关系

透过率是波数和大气压的函数,如下图不同波长大气透过率随高度的变化 ∂ τ ( p , θ ) ∂ p \frac{\partial \tau(p,\theta)}{\partial p} pτ(p,θ)不同(CO2在8个波段的透过率随高度的变化)

在这里插入图片描述
由于辐射传输方程中第二项大气发射项中 B [ T ( p ) ] ∂ τ ( p , θ ) ∂ p B[T(p)]\frac{\partial \tau(p,\theta)}{\partial p} B[T(p)]pτ(p,θ),因此 ∂ τ ( p , θ ) ∂ p \frac{\partial \tau(p,\theta)}{\partial p} pτ(p,θ)起加权作用,因此将 ∂ τ ( p , θ ) ∂ p \frac{\partial \tau(p,\theta)}{\partial p} pτ(p,θ)称作权重函数
在这里插入图片描述
对于弱吸收带,主要来自大气低层,得到的温度主要代表大气低层的温度;而强吸收带,测量的辐射主要来自大气高层

某一波长的权重参数有一定宽度,因此卫星测量的辐射来自某一气层,该气层称为有效辐射层

  • 在大气窗区,测得的是地表温度
  • 在15微米左右,CO2强烈吸收红外辐射,测量的是对流层顶到平流层的温度
  • 可以通过选择适当的波数范围,使该通道内只有一种强吸收气体,来遥感特定高度的温度

在这里插入图片描述

4.4 卫星观测通道的选取

  • 对于CO2,可用于大气测温的有4.3,15微米吸收带
  • 对于氧气有5mm吸收带
  • 不同的吸收带之间,能量,温度灵敏度都有差异

4.5 遥感大气温度应具备的条件

  • 大气中选用的发射辐射的气体混合比是常定的
  • 对于选定波段内卫星接收到的辐射主要取决于大气的垂直温度分布
  • 所选取的某种吸收气体的吸收带应尽可能不与其他气体重合
  • 必须满足局地热力平衡
  • 所选用的波长范围内,散射辐射要小

4.6 计算透过率的方式

  • 将大气从大气顶到地面分成若干平行且均匀的厚度层
  • 按波数0.1 c m − 1 cm^{-1} cm1划分光谱间隔,计算每一层的吸收系数,求得透过率
  • 计算不同天顶角的透过率
  • 对于某些谱线存在水汽和臭氧吸收,要分别计算水和臭氧的气体透过率,计算出总的大气透过率
  • 绘制气体与透过率关系曲线图
  • 之后计算差分权重系数

4.7 小结

  • 可见光云图的色调取决于反照率和太阳高度角,接收到的辐射越多则越白,反之越黑
  • 红外云图中色调取决于温度,越白说明温度越低,反之越高

五、微波遥感

在热平衡条件下,大气还会发射微波辐射;同时大气对微波的吸收主要是若干气体成分和云雨,其中氧气和水汽在微波有很强吸收带

利用大气本身发射的微波辐射进行大气探测,称为微波大气遥感;微波对云有穿透性,可弥补红外遥感的某些不足

5.1 大气、地表和云的微波辐射特性

用于大气遥感的微波吸收带主要有:

  • 氧气在0.253,0.5的两个吸收带
  • 水汽在0.164和1.348的两个强吸收带

对于微波段,大气窗区主要有:1.4mm,3.2mm,8mm,1.6-15cm

  • 在红外波段,地表可近似作为黑体来处理,其比辐射率与地表性质无关;但对于微波波段,不同地表的微波比辐射率变化很大,地表不能当作黑体处理

在这里插入图片描述

  • 云对于微波波长而言可以用瑞利散射计算其散射特性;且云的吸收与发射只与云含水量有关,与云底大小分布无关——由此可以用微波辐射强弱探测云中液态含水量;冰云的吸收系数比水云小几百倍,因此冰云的微波辐射很弱
  • 而降水粒子尺度较大,根据米散射理论得出降水系数与雨强的经验拟合公式
    α p = a R b ; α 是降水吸收系数, R 为雨强, a , b 是温度和波长的函数 \alpha_p=aR^b;\alpha是降水吸收系数,R为雨强,a,b是温度和波长的函数 αp=aRb;α是降水吸收系数,R为雨强,a,b是温度和波长的函数

5.2 大气微波遥感方程

  • 微波波长较长,气体分子的散射可忽略不计,气溶胶粒子的散射、吸收、衰减可忽略不计,在晴空大气中,只用考虑大气的微波吸收和发射过程

用亮度温度表示的微波遥感方程
d T b f ( l ) ρ d λ = − k f T b f ( l ) + k f T , f 是频率, k 为吸收系数 \frac{dT_{bf}(l)}{\rho d\lambda}=-k_f T_{bf}(l)+k_fT,f是频率,k为吸收系数 ρdλdTbf(l)=kfTbf(l)+kfTf是频率,k为吸收系数

地对空遥感
T b f ( 0 ) = ∫ 0 ∞ ρ k f T ( z ) e − ∫ 0 l ρ k f d l ′ d l T_{bf}(0)=\int_0^{\infty}\rho k_f T(z)e^{-\int_0^l \rho k_f dl'}dl Tbf(0)=0ρkfT(z)e0lρkfdldl

空对地遥感
在这里插入图片描述
左端为卫星接收到的微波辐射亮温,右侧第一项为地表发射的微波辐射到达卫星的部分,第二项为地面反射的大气向下的微波再透过大气到达卫星的部分,第三项为大气向上发射的微波辐射到达卫星的部分

与红外辐射传输方程相比多了第二项,因为红外辐射传输方程中将地面视为黑体,因此第二项忽略为0

5.3 微波遥感水汽含量

洋面上空的水汽含量和云中液态水含量主要利用微波扫描辐射成像仪获取亮温数据反演得到

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值