零、被动遥感
被动遥感指接收大气自身发射的电磁辐射或反射自然源来获取大气信息,由于没有发射部分,可以节省能源,缩小体积,适合以卫星为观测平台
- 根据接收的波段不同,可分为可见光遥感、红外遥感、微波遥感等
- 按观测不同可分为:卫星遥感、空基遥感、地基遥感等
一、辐射
1.1 辐射能(Q)
电磁辐射所携带的能量,单位J
1.2 辐射通量(F)
指辐射在单位时间内通过空间某一表面的辐射能,就是以辐射形式发射,吸收,传递的功率,用单位J/s或W表示
1.3 辐射通量密度(E)
单位表面积上发射或截获的辐射通量,单位为 W / m 2 , E = d F d A W/m^2,E=\frac{dF}{dA} W/m2,E=dAdF
- 一般把接收面上的辐射通量密度叫做辐照度,发射出去的通量密度称为辐出度
1.4 立体角
定义:锥体所拦截的球面积与半径的平方之比
单位:sr(球面度)
一个球面的立体角为 4 π 4\pi 4π
球坐标系下的立体角计算
1.5 辐射强度(I)
在给定方向单位立体角内发射或接收到的辐射通量称为辐射强度,用公式 d F d Ω \frac{dF}{d\Omega} dΩdF表示,单位为 W / S r W/S_r W/Sr
1.6 辐亮度(辐射率)(L)
在发射体或接收体表面某一面元处的垂直于任意给定方向单位面积上的辐射强度,称为辐亮度或辐射率,记为L,单位是 W / ( S r . m 2 ) W/(S_r . m^2) W/(Sr.m2)
若是单色辐亮度,加上单位波长 W / ( S r . m 2 . μ m ) W/(S_r . m^2.\mu m) W/(Sr.m2.μm)
L = d I d A c o s θ = 1 c o s θ d E d Ω L=\frac{dI}{dAcos\theta}= \frac{1}{cos \theta}\frac{dE}{d\Omega} L=dAcosθdI=cosθ1dΩdE等于是垂直与该面积方向的单位面积的辐射强度
- 如果从表面元上发射的辐亮度是各向同性的,这种辐射源叫做朗伯体
- 辐射强度和辐亮度都是对于漫射辐射而言的,对于平行辐射这种定义没有定义,因为平行辐射无法计算立体角
- 太阳对地球的张角非常小,很多实际问题中将太阳的直射光辐射看作是平行辐射
1.7 单色辐亮度
- 上述的物理量其实与波长或频率都有关
- 单色辐亮度 L λ L_\lambda Lλ单位为 W / ( S r . m 2 . μ m ) W/(S_r.m^2.\mu m) W/(Sr.m2.μm)
- 在一定波长范围的辐亮度可以写成 L = ∫ λ 1 λ 2 L λ d λ L=\int_{\lambda _1}^{\lambda _2}L_\lambda d\lambda L=∫λ1λ2Lλdλ
1.8 黑体、灰体、选择性辐射体
- 黑体:某一物体在任何温度下,对任意方向和波长的吸收率或发射率都等于1
- 灰体:指物体的吸收率或发射率为与波长无关且小于1 的常数
- 选择性辐射体:物体的吸收率或发射率随波长改变
1.9 发射率 ϵ \epsilon ϵ
辐射体的辐射通量密度与相同温度黑体的辐射通量密度之比
1.10 黑体辐射定律(普朗克定律)
- B λ B_\lambda Bλ为单色辐亮度,h为普朗克常数,k为玻尔兹曼常数, λ \lambda λ为波长
黑体光谱特点
:
-
理论上任何温度的绝对黑体都放射从0到无穷大波段的辐射
-
黑体的温度越低,其积分辐出度会减小
-
黑体温度越高,其辐射峰值对应波长会变短
-
温度高的黑体比温度低的黑体在各个波段的辐亮度都要大
1.11 维恩位移定律
通过对普朗克函数对波长求偏导,发现对于确定的温度,其辐亮度峰值对应的波长为 λ m a x = k w T = 2897.8 T \lambda_{max}=\frac{k_w}{T}=\frac{2897.8}{T} λmax=Tkw=T2897.8,波长单位为微米, k w k_w k