📋 个人简介
🌞上次,我们用C语言实现了一种特殊的二叉树结构:堆。但对于普通的二叉树,我们又可以有哪些操作呢???
😃今天我们就用C语言来实现一些二叉树的三种遍历方式:前序遍历,中序遍历, 后序遍历。😃
二叉树的遍历
二叉树的遍历方式主要有:先序遍历、中序遍历、后序遍历、层次遍历。先序、中序、后序其实指的是父节点被访问的次序。若在遍历过程中,父节点先于它的子节点被访问,就是先序遍历;父节点被访问的次序位于左右孩子节点之间,就是中序遍历;访问完左右孩子节点之后再访问父节点,就是后序遍历。不论是先序遍历、中序遍历还是后序遍历,左右孩子节点的相对访问次序是不变的,总是先访问左孩子节点,再访问右孩子节点。而层次遍历,就是按照从上到下、从左向右的顺序访问二叉树的每个节点。
首先,我们建立一棵二叉树,文章后的所有操作都是基于这棵二叉树来实现的
1. 前序遍历
什么是前序遍历
所谓前序遍历,就是先根节点,再左子树,然后右子树
对应到之前的那一棵大二叉树就是如下的步骤:
- 🌵首先是根节点 1
- 🌵取到 1 的左子节点 2
- 🌵再取 2 的左子节点 3
- 🌵取 3 的左子节点,但 3 的 左子节点为 NULL ,所以我们取 3的右子节点 6
- 🌵此时 节点 2 的左子树我们已经遍历完毕,开始遍历 2 的右子树,取到 2 的右子节点 4
- 🌵4 的左右子节点都为 NULL,此时我们已经遍历完 1 的左子树,那么我们开始遍历 1 的右子树。(方法与遍历左子树类似,这里就不赘述了)
最后:我们得到的顺序为 1, 2, 3, 6, 4, 3, 5 。这样我们便成功的对这个二叉树完成了前序遍历。
前序遍历的实现
那么这么复杂的过程,我们该如何去用代码实现呢???
其实就下面的几行代码,就可以实现了。
void PrevOrder(BTNode* root)
{
if (root == NULL)
{
return;
}
printf("%d ", root->data);
PrevOrder(root->left);
PrevOrder(root->right);
}
初学者看起来可能会很懵。什么? 这就完了,那么复杂的步骤就这几步就可以实现了❓❓❓
其实在这里,我们用到了递归的方法和分治的思想。对于每一个节点,我们都可以把它看做一个根节点。
- 如果它不为空,那么我们就输出它的内容,然后再分别去遍历它的左子树和右子树。
- 如果为空,说明我们已经遍历完了,返回就可以了。
2. 中序遍历
什么是中序遍历
中序遍历就是先左子树,根节点,最后右子树
对应到之前的大二叉树就是下面的步骤:
- ☁️ 首先我们取到最左边的节点,它为 3 的左子节点
- ☁️ 然后我们取根节点 3
- ☁️接着取到 3 的右节点 6
- ☁️此时我们已经把 2 作为根节点的左子树遍历完了,然后我们取到根节点 2
- ☁️我们开始遍历 2 的右树,首先我们取到以 4 为根的左子节点,左节点为NULL ,然后我们取根 4
- ☁️以 1 为根的左子树遍历完了,然后我们取根 1 。
- ☁️然后我们遍历右子树(方法类似,后面就不赘述了)
最后:我们取到的顺序为:3, 6, 2, 4, 1, 5, 3
中序遍历的实现
void InOrder(BTNode* root)
{
if (root == NULL)
{
return;
}
InOrder(root->left);
printf("%d ", root->data);
InOrder(root->right);
}
原理与前序类似,使用递归,先遍历左子树,然后取根,最后遍历右子树。
3. 后序遍历
什么是后序遍历
中序遍历就是先左子树,右子树,最后根节点。
对应到之前的大二叉树就是下面的步骤:
- ☀️首先我们找到最左边的节点,它为 3 的左子节点
- ☀️然后我们取到 3 的右子节点 6
- ☀️接下来我们取根 3
- ☀️以 2 为根的左子树已经遍历完了,然后我们取它右子树中不为NULL的节点 4
- ☀️然后取根节点 2
- ☀️以 1 为根的左子树已经遍历完了,我们开始遍历右子树。
- ☀️首先我们取以 3 为根节点的左子节点 5
- ☀️以 3 为根节点的右子树为空,所以我们取到根 3
- ☀️最后我们取到根 1 ,后序遍历完成
后序遍历的实现
void EndOrder(BTNode* root)
{
if (root == NULL)
{
return;
}
EndOrder(root->left);
EndOrder(root->right);
printf("%d ", root->data);
}
结语
欢迎各位参考与指导!!!博主最近在冲击C/C++领域新人,拜托大家帮忙点赞收藏一下❤️