算法_杨氏矩阵_杨氏矩阵算法_剑指offer

目录

一、问题描述

二、问题分析

三、算法设计

​四、代码实现


一、问题描述

有一个数字矩阵,矩阵的每行从左到右是递增的,矩阵从上到下是递增的,请编写程序在这样的矩阵中查找某个数字是否存在。

要求:时间复杂度小于O(N);

二、问题分析

根据题目,矩阵每行从左到右递增,从上到下递增,那可以用以下图片来大概描述这个矩阵里数字的大小:

908abe4cf058469eb18c19ac564a972b.png

也就是想在这样的矩阵里找到某个数字是否存在。时间复杂度小于O(N),也就是说时间复杂度需要是O(1)或者O(logN)。

三、算法设计

可以将矩阵抽象成数组。

假设这个矩阵里的数字是1,2,3,4,5,6,7,8,9。要查找的数字是7。

9b5cdd40d5064d47a680d893f23eb46a.png

在矩阵中,任何一个数,它的右边和下边的数必然大于它,它的左边和上边的数必然小于它。

那么,可以利用这一特点来查找。

如果要查找的数比遍历到的元素大,那我就向下查找;

如果比遍历到的元素小,那我就向左查找。

以下几张图演示查找过程:

b4554f1ca808402cb327d9d7fad9a6fe.png

ef5bb59666694dcd9fe074ee5522cfaa.png

c8bb922185bd49b1b47e86132d5f673e.png

3eea43ad8fcd44fa8305eb2cd1628e7d.png

e0cf4ccc40ea41929c1b61e036b3bebc.png四、代码实现

#include <stdio.h>
int find_k(int arr[3][3], int *px, int *py,int k)
{
	int x = 0;
	int y = *py - 1;
	while (x<=*px-1&&y>=0)
	{
		if (arr[x][y] < k)
		{
			x++;
		}
		else if (arr[x][y] > k)
		{
			y--;
		}
		else 
		{ 
			*px = x;
			*py = y;
			return 1;
		}
	}
	return 0;
}
int main()
{
	int arr[3][3] = { 1,2,3,4,5,6,7,8,9 };
	int k = 7;
	int x = 3;
	int y = 3;
	int ret=find_k(arr,&x,&y,k);
	if (ret == 0)
	{
		printf("找不到\n");
	}
	else
	{
		printf("找到了,下标是:%d %d", x, y);
	}
	return 0;
}

 

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值