算法_合并果子题解

该文章描述了一个关于合并果子堆的问题,目标是最小化合并过程中的体力消耗。算法分析指出应按重量从小到大合并两个最小的果子堆,并提供了C++代码实现,通过排序和累加重量来求解最小消耗值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

目录

一、问题描述

二、算法分析与设计

三、代码实现


 

一、问题描述

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 n-1n−1 次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 11,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有 33 种果子,数目依次为 1,2,91,2,9。可以先将 1、21、2 堆合并,新堆数目为 33,耗费体力为 33。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 1212,耗费体力为 1212。所以多多总共耗费体力 =3+12=15=3+12=15。可以证明 1515 为最小的体力耗费值。

二、算法分析与设计

由题目可知要省力气的话,就要依次将两个重量最小的果子堆合并。

需要用到数组,存放最开始果子堆的重量。

然后每次合并两个果子堆,用一个变量接收合并所用的力气,再对果子堆重量大小从小到大排序。

注意!已经合并过的果子堆就不需要再对它的重量排序了,所以要用到sort(a+i,a+n)。

然后继续合并,继续排序,直至合并n-1次。

三、代码实现

#include <iostream>
#include <algorithm>
using namespace std;
int a[110];
int main()
{
  int n,sum=0;
  scanf("%d",&n);
  for(int i=0; i<n; i++)
  {
    scanf("%d",&a[i]);
  }
  for(int i=0; i<n-1; i++)
  {
    sort(a+i,a+n);
    a[i+1] = a[i] + a[i+1];
    sum += a[i+1];
  }
  printf("%d",sum);
  return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值