题目链接
目录
一、问题描述
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 n-1n−1 次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 11,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有 33 种果子,数目依次为 1,2,91,2,9。可以先将 1、21、2 堆合并,新堆数目为 33,耗费体力为 33。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 1212,耗费体力为 1212。所以多多总共耗费体力 =3+12=15=3+12=15。可以证明 1515 为最小的体力耗费值。
二、算法分析与设计
由题目可知要省力气的话,就要依次将两个重量最小的果子堆合并。
需要用到数组,存放最开始果子堆的重量。
然后每次合并两个果子堆,用一个变量接收合并所用的力气,再对果子堆重量大小从小到大排序。
注意!已经合并过的果子堆就不需要再对它的重量排序了,所以要用到sort(a+i,a+n)。
然后继续合并,继续排序,直至合并n-1次。
三、代码实现
#include <iostream>
#include <algorithm>
using namespace std;
int a[110];
int main()
{
int n,sum=0;
scanf("%d",&n);
for(int i=0; i<n; i++)
{
scanf("%d",&a[i]);
}
for(int i=0; i<n-1; i++)
{
sort(a+i,a+n);
a[i+1] = a[i] + a[i+1];
sum += a[i+1];
}
printf("%d",sum);
return 0;
}