CINTA 作业七 同态

CINTA 作业七 同态

3、如果 H 1 H_1 H1 H 2 H_2 H2是群 G G G的正规子群,证明 H 1 H 2 H_1H_2 H1H2也是群 G G G的正规子群.

证明:

H 1 、 H 2 H_1、H_2 H1H2是群 G G G的正规子群,所以存在 g H 1 = H 1 g , g H 2 = H 2 g g H_1=H_1 g,g H_2=H_2 g gH1=H1g,gH2=H2g.

即对任意的 g ∈ G g\in G gG h 1 ∈ H 1 h_1\in H_1 h1H1,存在 h 1 ′ ∈ H 1 h_1'\in H_1 h1H1,使得 g h 1 = h 1 ′ g g h_1=h'_1g gh1=h1g.

同理,有对任意的 g ∈ G g\in G gG h 2 ∈ H 2 h_2\in H_2 h2H2,存在 h 2 ′ ∈ H 2 h_2'\in H_2 h2H2,使得 g h 2 = h 2 ′ g g h_2=h'_2g gh2=h2g.

所以, g h 1 h 2 = h 1 ′ g h 2 = h 1 ′ h 2 ′ g g h_1h_2=h'_1gh_2=h'_1h'_2g gh1h2=h1gh2=h1h2g.

即对于任意的 g ∈ G g\in G gG h 1 h 2 ∈ H 1 H 2 h_1h_2\in H_1 H_2 h1h2H1H2,存在 h 1 ′ h 2 ′ ∈ H 1 H 2 h'_1h'_2\in H_1 H_2 h1h2H1H2,使得 g h 1 h 2 = h 1 ′ h 2 ′ g g h_1h_2=h'_1h'_2g gh1h2=h1h2g.

所以,可得 g H 1 H 2 = H 1 H 2 g g H_1H_2=H_1H_2g gH1H2=H1H2g.

又因为 H 1 H_1 H1 H 2 H_2 H2是群 G G G的子群,所以 H 1 H 2 H_1H_2 H1H2也是群 G G G的子群.

证得 H 1 H 2 H_1H_2 H1H2也是群 G G G的正规子群.

5、定义映射 ϕ : G → G \phi:G→G ϕ:GG : g → g 2 :g→ g^2 gg2 。请证明 ϕ \phi ϕ是一种同态当且仅当 G G G是阿贝尔群.

证明:

充分性:

ϕ \phi ϕ是一种同态,所以对任意 a 、 b ∈ G a、b\in G abG, ϕ \phi ϕ满足 ϕ ( a b ) = ϕ ( a ) ϕ ( b ) \phi(ab)=\phi(a)\phi(b) ϕ(ab)=ϕ(a)ϕ(b).

( a b ) 2 = a 2 b 2 (ab)^2=a^2b^2 (ab)2=a2b2

a 2 b 2 = ( a b ) ( a b ) a^2b^2=(ab)(ab) a2b2=(ab)(ab)

根据消去律,等式两边同在左侧乘 a − 1 a^{-1} a1,得 a b 2 = b ( a b ) ab^2=b(ab) ab2=b(ab) ;等式两边同在右侧乘 b − 1 b^{-1} b1,得 a b = b a ab=b a ab=ba .

所以 G G G为阿贝尔群.

必要性:

G G G为阿贝尔群,则对任意 a 、 b ∈ G a、b\in G abG满足交换律 a b = b a ab=b a ab=ba.

ϕ ( a b ) = ( a b ) 2 = ( a b ) ( a b ) = a ( b a ) b = a ( a b ) b = a 2 b 2 \phi(ab)=(ab)^2=(ab)(ab)=a(b a)b=a(ab)b=a^2b^2 ϕ(ab)=(ab)2=(ab)(ab)=a(ba)b=a(ab)b=a2b2.

所以, ϕ \phi ϕ是一种同态.

综上,证得 ϕ \phi ϕ是一种同态当且仅当 G G G是阿贝尔群.

7、证明:如果 H H H是群 G G G上指标为2的子群,则 H H H G G G的正规子群.

证明:

因为 [ G : H ] = 2 [G:H] = 2 [G:H]=2,故有两种情况:

(1) g ∈ H g ∈ H gH.

g H = H = H g g H = H = Hg gH=H=Hg;

(2) g ∉ H g \notin H g/H.

对于任意的 g ∈ G , h 1 ∈ H g\in G,h_1\in H gG,h1H,存在 g h 1 = h 1 ′ g h_1=h_1' gh1=h1,但 h 1 ′ ∈ G , h 1 ′ ∉ H h_1'\in G,h_1'\notin H h1G,h1/H.

对于任意的 g ∈ G , h 2 ∈ H g\in G,h_2\in H gG,h2H,存在 h 2 g = h 2 ′ h_2 g=h_2' h2g=h2,但 h 2 ′ ∈ G , h 2 ′ ∉ H h_2'\in G,h_2'\notin H h2G,h2/H.

假设有 H ′ = G − H H'=G-H H=GH,使得 h 1 ′ ∈ H ′ , h 2 ′ ∈ H ′ h_1'\in H',h_2'\in H' h1H,h2H,即 g H ∈ H ’ , H g ∈ H ’ g H ∈ H’,Hg ∈ H’ gHHHgH.

对任意 h ’ ∈ H ’ h’ ∈ H’ hH,有 h ’ ∈ G h’ ∈ G hG,但 h ’ h’ h不属于 H H H.

H H H中存在 h 1 , h 2 h1,h2 h1h2,使得 h ’ = g h 1 ∈ g H h’ = gh1 ∈ g H h=gh1gH h ’ = g h 2 ∈ H g h’ = gh2 ∈ Hg h=gh2Hg

所以 g H = H ′ = H g gH = H' = Hg gH=H=Hg.

9、给定任意群 G G G H H H是群 G G G的正规子群。请证明:如果群 G G G是循环群,则商群 G / H G/H G/H也是循环群.

证明:

G G G是由 g g g生成的循环群, H H H G G G的子群.我们只需要证每一个 G / H G/H G/H元素的表示形式都是 ( g H ) k ( k ∈ Z ) (g H)^k(k\in Z) (gH)k(kZ).

假设 x H ∈ G / H x H\in G/H xHG/H,

对于生成元 g g g , 有 x = g k ( k ∈ Z ) x=g^k(k\in Z) x=gk(kZ)生成 G G G.

( g H ) k = ( g k ) H = x H (g H)^k=(g^k)H=x H (gH)k=(gk)H=xH

所以, g H g H gH生成 G / H G/H G/H.

故得证,如果群 G G G是循环群,则商群 G / H G/H G/H也是循环群.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值