一步一个台阶,两个台阶,三个台阶,直到 m个台阶,有多少种方法爬到n阶楼顶

70.爬楼梯

力扣链接:70. 爬楼梯 - 力扣(Leetcode)

题目:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 12 个台阶。你有多少种不同的方法可以爬到楼顶呢?

思路:

假设要爬到三楼,每次可以爬一或两层,有两种选择,一种是从一楼爬两层楼梯到三楼,另一种是从二楼爬一层楼梯到三楼。即:3=2+1 or 3=1+2

同理,对于爬到二楼,也有两种情况,一种从一楼爬一层楼梯到二楼,另一种直接从0层爬两层楼梯到二楼。即:2=1+1 or 2=0+1  (两种)

同理,爬到一楼,一种情况,从0层爬一层楼梯到一楼。即:1=0+1  (一种)

因此,对于爬到三楼,总共有三种情况。3=1+1+1 or 3=0+1+1 or 3=0+1+2

不难看出,爬到三楼的总方法数由爬到二楼,一楼总方法数之和组成。

假设dp[n]代表爬到第n层的总方法数,dp[n]=dp[n-1]+dp[n-2]

也就是动态规划的方法求解:其中dp[n]=dp[n-1]+dp[n-2]为状态转移方程

代码

    public int climbStairs(int n) {
        // 设定dp[i]为爬到第i层楼梯的方法
        int[] dp = new int[n+1];
​
        /*
            状态方程:dp[i]=dp[i-1]+dp[i-2];
            解释:假设求爬到第三层楼梯的方法
            可以由第二层爬一楼到第三层,也可以由第一层爬两楼到第三层
        */
        
        /*
            dp[i]如何初始化
            dp[1]=1,dp[2]=2;
            至于dp[0]没有意义
        */
        if(n <= 2) return n;
        dp[1] = 1;
        dp[2] = 2;
        for(int i = 3; i <= n; i++) {
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n];
    }

进阶

上题是每次只能移动一或两个台阶,倘若每次可以移动1,2,...,m个台阶,该如何求爬到n楼的总方法数

思路

假设 m=3 n=4 求爬到四楼的总方法数

和上面一样

爬到四楼可以由三楼爬一层楼梯,由二楼爬两层楼梯,由一楼爬三层楼梯。4=3+1 or 4=2+2 or 4=1+3

同理 爬到三楼 3=2+1 or 3=1+2 or 3=0+3 (四种)

同理 爬到二楼 2=1+1 or 2=0+1 (两种)

同理 爬到一楼 1=0+1 (一种)

因此,爬到四楼总共有七种方法

假设dp[i]为爬到第i楼的总方法,dp[i]=dp[i-1]+dp[i-2]+dp[i-3]

代码

    /**
     * 爬上n楼的总方法
     * @param m 每次可走台阶的最大值
     * @param n n楼
     * @return 返回爬上n楼的总方法
     */
    public int climbStairs(int m,int n) {
        int[] dp = new int[n + 1];
        dp[0] = 1;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                if (i - j >= 0) dp[i] += dp[i - j];
            }
        }
        return dp[n];
    }

参考:代码随想录 (programmercarl.com)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值