70.爬楼梯
题目:
假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
思路:
假设要爬到三楼,每次可以爬一或两层,有两种选择,一种是从一楼爬两层楼梯到三楼,另一种是从二楼爬一层楼梯到三楼。即:3=2+1 or 3=1+2
同理,对于爬到二楼,也有两种情况,一种从一楼爬一层楼梯到二楼,另一种直接从0层爬两层楼梯到二楼。即:2=1+1 or 2=0+1 (两种)
同理,爬到一楼,一种情况,从0层爬一层楼梯到一楼。即:1=0+1 (一种)
因此,对于爬到三楼,总共有三种情况。3=1+1+1 or 3=0+1+1 or 3=0+1+2
不难看出,爬到三楼的总方法数由爬到二楼,一楼总方法数之和组成。
假设dp[n]代表爬到第n层的总方法数,dp[n]=dp[n-1]+dp[n-2]
也就是动态规划的方法求解:其中dp[n]=dp[n-1]+dp[n-2]为状态转移方程
代码
public int climbStairs(int n) { // 设定dp[i]为爬到第i层楼梯的方法 int[] dp = new int[n+1]; /* 状态方程:dp[i]=dp[i-1]+dp[i-2]; 解释:假设求爬到第三层楼梯的方法 可以由第二层爬一楼到第三层,也可以由第一层爬两楼到第三层 */ /* dp[i]如何初始化 dp[1]=1,dp[2]=2; 至于dp[0]没有意义 */ if(n <= 2) return n; dp[1] = 1; dp[2] = 2; for(int i = 3; i <= n; i++) { dp[i] = dp[i-1] + dp[i-2]; } return dp[n]; }
进阶
上题是每次只能移动一或两个台阶,倘若每次可以移动1,2,...,m个台阶,该如何求爬到n楼的总方法数
思路
假设 m=3 n=4 求爬到四楼的总方法数
和上面一样
爬到四楼可以由三楼爬一层楼梯,由二楼爬两层楼梯,由一楼爬三层楼梯。4=3+1 or 4=2+2 or 4=1+3
同理 爬到三楼 3=2+1 or 3=1+2 or 3=0+3 (四种)
同理 爬到二楼 2=1+1 or 2=0+1 (两种)
同理 爬到一楼 1=0+1 (一种)
因此,爬到四楼总共有七种方法
假设dp[i]为爬到第i楼的总方法,dp[i]=dp[i-1]+dp[i-2]+dp[i-3]
代码
/** * 爬上n楼的总方法 * @param m 每次可走台阶的最大值 * @param n n楼 * @return 返回爬上n楼的总方法 */ public int climbStairs(int m,int n) { int[] dp = new int[n + 1]; dp[0] = 1; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { if (i - j >= 0) dp[i] += dp[i - j]; } } return dp[n]; }