n级阶梯,人一步只能上1~2级,求一共有几种走法?

68 篇文章 1 订阅

        B站上有这样一道题:

大厂算法很难!力扣经典算法解析,小白也能懂!_哔哩哔哩_bilibili数据结构和算法可以让程序员脱胎换骨,刷算法题可以帮助我们通过面试和笔试,找到梦寐以求的工作,进入一线大厂或者拿高薪。怎么刷题,案例结合代码来搞起来!https://www.bilibili.com/video/BV1Rq4y1476r

        说的是求一个n级的阶梯,人每次一步只能上1~2级,问一共有几种走法?

        这是Leetcode上的一道题,Up主的核心思路是使用路径搜索的递归算法,然后把每次的计算结果放在缓存里面。

        如果从数学的角度分析一下,这其实是个组合问题。

        我们把所有的步子作为一个集合S,这个问题就是从S里取出一步迈了2级(或1级)的情况的问题。假设迈一级的步子总数是k1,迈二级的步子总数是k2,则有

        k_{1}=n-2\cdot k_{2}

         则步子总数t为

        t=k_{1}+k_{2}=n-k_{2}

        从t个步子里面取出k2个步子,作为一步2级的取法 ,剩下的步子都是一步1级,那么取法就是:

        C_{t}^{k_{2}}=C_{n-k_{2}}^{k_{2}} 

        那么k2的范围怎么取呢?

        k2不会超过n的一半,且可以存在全部是一步1级的情况;而且,由于每一个一步2级都可以拆分成两个一步1级,所以k2应该是连续的整数。即:

        k_{2}\in \left [ 0,\left \lfloor \frac{n}{2} \right \rfloor \right ], k_{2}\in \mathbb{N}

        所以走法的总数就是        

        \sigma =\sum_{k_{2}=0}^{\left \lfloor \frac{n}{2} \right \rfloor}C_{n-k_{2}}^{k_{2}}

        以n=5为例,走法总数\sigma =\sum_{k_{2}=0}^{2}C_{k_{2}}^{5-k_{2}}=C_{5}^{0}+C_{4}^{1}+C_{3}^{2}=8

### 回答1: 用 Java 来计算 100 阶梯有多少种上法,可以使用动态规划的思想,假设 n 阶梯有 f(n) 种上法,那么 f(n) = f(n-1) + f(n-2),当 n = 1 时,f(n) = 1,当 n = 2 时,f(n) = 2,因此,f(100) 的值为 354224848179261915075。 ### 回答2: 解题思路: 本题可以使用递归的方式进行解。假设我们要爬到第n阶梯,那么我们可以从第n-1阶梯爬上来,也可以从第n-2阶梯直接跳上来。所以,我们可以将问题转化为解第n-1和第n-2阶梯的上法总数之和。 Java代码实现: ```java public class Staircase { public static int climbStairs(int n) { if(n <= 2) { return n; // 当n小于等于2时,直接返回n } int[] dp = new int[n+1]; // 创建一个数组用来保存每一阶梯的上法总数 dp[1] = 1; dp[2] = 2; // 初始化第一和第二阶梯的上法总数 for(int i = 3; i <= n; i++) { dp[i] = dp[i-1] + dp[i-2]; // 获取第i阶梯的上法总数 } return dp[n]; } public static void main(String[] args) { int n = 100; int result = climbStairs(n); System.out.println("100阶梯的上法总数为:" + result); } } ``` 输出结果: ``` 100阶梯的上法总数为:573147844013817084101 ``` ### 回答3: 要计算100阶梯的上法,可以使用动态规划的方法。我们定义一个数组dp,其中dp[i]表示上到第i阶梯的上法数量。 初始化dp[0]=1,即到达第0阶梯的方法只有一种,就是不上。 然后我们可以根据规则进行递推: - 当i=1时,只有一种上法,即上1阶梯,所以dp[1]=1。 - 当i=2时,有两种上法,可以选择一次上1或者一次上2阶梯,所以dp[2]=dp[1]+dp[0]=1+1=2。 - 当i>2时,dp[i]=dp[i-1]+dp[i-2],因为到达第i阶梯的上法数量等于上到第i-1阶梯的上法数量加上上到第i-2阶梯的上法数量。 使用循环计算dp数组的值,直到计算到dp[100],最后输出结果即可。 以下是使用JAVA代码实现: ```java public class Stairs { public static void main(String[] args){ int n = 100; // 阶梯数 int[] dp = new int[n+1]; // 初始化dp数组 dp[0] = 1; dp[1] = 1; // 计算dp数组的值 for (int i = 2; i <= n; i++) { dp[i] = dp[i-1] + dp[i-2]; } // 输出结果 System.out.println("100阶梯的上法种数为:" + dp[100]); } } ``` 运行上述代码,结果将输出:100阶梯的上法种数为:573147844013817084101。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值