扩展欧几里得exgcd算法 acm寒假集训日记22/1/12

数学证明

ax + by = gcd(a,b)

令gcd(a,b) = d

得:ax + by = d ①

因为:gcd(a,b) = gcd(b,a%b)

所以:bx + a%b * y = d

bx + (a-[a/b] * b) * y = d     注:[ ]是向下取整的意思

整理得:bx + ay - [a/b] * by = d

ay + b(x - [a/b] * y) = d ②

由①和②得:

1 . x = y

2. y = x - [a/b] * y = x - [a/b] * x

 

边界:

当b=0时,ax + by = gcd(a,b) = a

ax = a ==> x = 1

by = 0 ==> y = 0

 

综上:

x = 1,   y = 0     (b=0)

x = y,   y = y-[a/b] * x (或写成y-=[a/b]*x)     (b!=0)

代码实现

void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
	if(b==0)
	{
		d = a;
		x = 1;
		y = 0;
	}
	else
	{
		exgcd(b,a%b,d,y,x);
		y -= x*(a/b);
	}
}

注意:x y 需要引用操作

老规矩,上一道例题收个尾!

给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的。

Input

输入2个数M, N中间用空格分隔(1 <= M < N <= 10^9)

Output

输出一个数K,满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的。

Sample Input

2 3

Sample Output

2

AC代码如下:

#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
	if(b==0)
	{
		d = a;
		x = 1;
		y = 0;
	}
	else
	{
		exgcd(b,a%b,d,y,x);
		y -= x*(a/b);
	}
}
int main()
{
	ll m,n,k;
	cin>>m>>n;
	ll x,y,d;
	exgcd(m,n,d,x,y);
	k = (x%n+n)%n;
	cout<<k<<endl;
}

最后,感谢您的阅读!!!

因为,约还没有赴,你还没有见着,事还没有成。所以,为之千千万万遍努力。

 

  • 7
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
扩展欧几里算法是求解一元一次不定方程 ax + by = gcd(a,b) 的一种方法,其中 a 和 b 是整数,gcd(a,b) 是它们的最大公约数,x 和 y 是整数解。逆元是指在模运算下,一个数的乘法逆元是指与它相乘后模运算得到 1 的数。在数论中,常常需要求一个数在模意义下的逆元,即一个数 k 满足 (k * x) % m = 1,其中 m 是模数。 下面是扩展欧几里算法求逆元的 C 语言实现: ```c #include <stdio.h> // 扩展欧几里算法 int exgcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int gcd = exgcd(b, a % b, y, x); *y -= a / b * (*x); return gcd; } // 求逆元 int modinv(int a, int m) { int x, y; int gcd = exgcd(a, m, &x, &y); if (gcd != 1) { return -1; // a 和 m 不互质,不存在逆元 } else { return (x % m + m) % m; // 转化为正整数 } } int main() { int a = 3, m = 11; int inv = modinv(a, m); if (inv == -1) { printf("%d 在模 %d 意义下不存在逆元\n", a, m); } else { printf("%d 在模 %d 意义下的逆元是 %d\n", a, m, inv); } return 0; } ``` 这个程序中,exgcd 函数通过递归实现扩展欧几里算法,返回 a 和 b 的最大公约数,并且求出 x 和 y 的值。在 modinv 函数中,我们调用 exgcd 函数求出 a 和 m 的最大公约数,并且判断 a 和 m 是否互质,如果不互质则不存在逆元。否则,根据扩展欧几里算法的结果,求出 x 的值作为 a 在模 m 意义下的逆元。注意,由于 x 可能是负数,所以要将其转化为正整数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Joanh_Lan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值