MobileNet实战:tensorflow2(1)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 批量预测

摘要

=============================================================

本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNetV3。

通过这篇文章你可以学到:

1、了解MobileNetV3的特点。

2、如何加载图片数据,并处理数据。

3、如果将标签转为onehot编码

4、如何使用数据增强。

5、如何使用mixup。

6、如何切分数据集。

7、如何加载预训练模型。

mobilenetv3简介

========================================================================

MobileNetV3 是由 google 团队在 2019 年提出的,是mobilenet系列的第三个版本,其参数是由NAS(network architecture search)搜索获取的,在ImageNet 分类任务中和V2相比正确率上升了 3.2%,计算延时还降低了 20%。V1里提出了深度可分离卷积,V2在V1的基础上增加了线性瓶颈(Linear Bottleneck)和倒残差(Inverted Residual),那么V3又有哪些特点呢?

先看一下V3的网络结构,V3版本有两个,一个是Large 和 Small,分别适用于不同的场景。网路结构如下:

image-20220205210432432

上表为具体的参数设置,其中bneck是网络的基本结构。SE代表是否使用通道注意力机制。NL代表激活函数的类型,包括HS(h-swish),RE(ReLU)。NBN 代表没有BN操作。s 是stride的意思,网络使用卷积stride操作进行降采样,没有使用pooling操作。

MobileNetV3 的特点:

  1. 继承V1的深度可分离卷积和V2的具有线性瓶颈的残差结构。

  2. 使用NetAdapt算法获得卷积核和通道的最佳数量。

  3. 使用了一种新的激活函数h-swish(x)代替Relu6,其公式:xRelu6(x + 3)/6。

  4. 引入SE通道注意力结构,使用了Relu6(x + 3)/6来近似SE模块中的sigmoid。

  5. 模型分为Large和Small,在ImageNet 分类任务中和V2相比,Large正确率上升了 3.2%,计算延时还降低了 20%。

项目结构

===============================================================

MobileNetV3_demo

├─data

│ ├─test

│ └─train

│ ├─Black-grass

│ ├─Charlock

│ ├─Cleavers

│ ├─Common Chickweed

│ ├─Common wheat

│ ├─Fat Hen

│ ├─Loose Silky-bent

│ ├─Maize

│ ├─Scentless Mayweed

│ ├─Shepherds Purse

│ ├─Small-flowered Cranesbill

│ └─Sugar beet

├─train.py

├─test1.py

└─test.py

训练

=============================================================

1、Mixup


mixup是一种非常规的数据增强方法,一个和数据无关的简单数据增强原则,其以线性插值的方式来构建新的训练样本和标签。最终对标签的处理如下公式所示,这很简单但对于增强策略来说又很不一般。

img

( x i , y i ) \left ( x_{i},y_{i} \right ) (xi​,yi​), ( x j , y j ) \left ( x_{j},y_{j} \right ) (xj​,yj​)两个数据对是原始数据集中的训练样本对(训练样本和其对应的标签)。其中 λ \lambda λ是一个服从B分布的参数, λ ∼ B e t a ( α , α ) \lambda\sim Beta\left ( \alpha ,\alpha \right ) λ∼Beta(α,α) 。Beta分布的概率密度函数如下图所示,其中 α ∈ [ 0 , + ∞ ] \alpha \in \left [ 0,+\infty \right ] α∈[0,+∞]

img

因此 α \alpha α是一个超参数,随着 α \alpha α的增大,网络的训练误差就会增加,而其泛化能力会随之增强。而当 α → ∞ \alpha \rightarrow \infty α→∞时,模型就会退化成最原始的训练策略。参考:https://www.jianshu.com/p/d22fcd86f36d

新建mixupgenerator.py,插入一下代码:

import numpy as np

class MixupGenerator():

def init(self, X_train, y_train, batch_size=32, alpha=0.2, shuffle=True, datagen=None):

self.X_train = X_train

self.y_train = y_train

self.batch_size = batch_size

self.alpha = alpha

self.shuffle = shuffle

self.sample_num = len(X_train)

self.datagen = datagen

def call(self):

while True:

indexes = self.__get_exploration_order()

itr_num = int(len(indexes) // (self.batch_size * 2))

for i in range(itr_num):

batch_ids = indexes[i * self.batch_size * 2:(i + 1) * self.batch_size * 2]

X, y = self.__data_generation(batch_ids)

yield X, y

def __get_exploration_order(self):

indexes = np.arange(self.sample_num)

if self.shuffle:

np.random.shuffle(indexes)

return indexes

def __data_generation(self, batch_ids):

_, h, w, c = self.X_train.shape

l = np.random.beta(self.alpha, self.alpha, self.batch_size)

X_l = l.reshape(self.batch_size, 1, 1, 1)

y_l = l.reshape(self.batch_size, 1)

X1 = self.X_train[batch_ids[:self.batch_size]]

X2 = self.X_train[batch_ids[self.batch_size:]]

X = X1 * X_l + X2 * (1 - X_l)

if self.datagen:

for i in range(self.batch_size):

X[i] = self.datagen.random_transform(X[i])

X[i] = self.datagen.standardize(X[i])

if isinstance(self.y_train, list):

y = []

for y_train_ in self.y_train:

y1 = y_train_[batch_ids[:self.batch_size]]

y2 = y_train_[batch_ids[self.batch_size:]]

y.append(y1 * y_l + y2 * (1 - y_l))

else:

y1 = self.y_train[batch_ids[:self.batch_size]]

y2 = self.y_train[batch_ids[self.batch_size:]]

y = y1 * y_l + y2 * (1 - y_l)

return X, y

2、 导入需要的数据包,设置全局参数


import numpy as np

from tensorflow.keras.optimizers import Adam

import cv2

from tensorflow.keras.preprocessing.image import img_to_array

from sklearn.model_selection import train_test_split

from tensorflow.python.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau

from tensorflow.keras.applications import MobileNetV3Large

import os

from tensorflow.python.keras.utils import np_utils

from tensorflow.python.keras.layers import Dense

from tensorflow.python.keras.models import Sequential

from mixupgenerator import MixupGenerator

norm_size = 224

datapath = ‘data/train’

EPOCHS = 300

INIT_LR = 3e-4

labelList = []

dicClass = {‘Black-grass’: 0, ‘Charlock’: 1, ‘Cleavers’: 2, ‘Common Chickweed’: 3, ‘Common wheat’: 4, ‘Fat Hen’: 5, ‘Loose Silky-bent’: 6,

‘Maize’: 7, ‘Scentless Mayweed’: 8, ‘Shepherds Purse’: 9, ‘Small-flowered Cranesbill’: 10, ‘Sugar beet’: 11}

classnum = 12

batch_size = 16

这里可以看出tensorflow2.0以上的版本集成了Keras,我们在使用的时候就不必单独安装Keras了,以前的代码升级到tensorflow2.0以上的版本将keras前面加上tensorflow即可。

tensorflow说完了,再说明一下几个重要的全局参数:

  • norm_size = 224 ,MobileNetV3默认的图片尺寸是224×224。

  • datapath = ‘data/train’, 设置图片存放的路径,在这里要说明一下如果图片很多,一定不要放在工程目录下,否则Pycharm加载工程的时候会浏览所有的图片,很慢很慢。

  • EPOCHS = 300, epochs的数量,关于epoch的设置多少合适,这个问题很纠结,一般情况设置300足够了,如果感觉没有训练好,再载入模型训练。

  • INIT_LR = 3e-4,学习率,一般情况从0.001开始逐渐降低,也别太小了到1e-6就可以了。

  • classnum = 12, 类别数量,数据集有12个类别,所有就定义12类。

  • batch_size = 16,batchsize,根据硬件的情况和数据集的大小设置,太小了loss浮动太大,太大了收敛不好,根据经验来,一般设置为2的次方。windows可以通过任务管理器查看显存的占用情况。

image-20220126135414054

Ubuntu可以使用nvidia-smi查看显存的占用。

image-20220120064407104

3、 加载图片


处理图像的步骤:

  1. 读取图像

  2. 用指定的大小去resize图像。

  3. 将图像转为数组

  4. 图像归一化

  5. 使用LabelBinarizer将标签转为onehot编码.

具体做法详见代码:

def loadImageData():

imageList = []

listClasses = os.listdir(datapath)# 类别文件夹

for class_name in listClasses:

class_path=os.path.join(datapath,class_name)

image_names=os.listdir(class_path)

for image_name in image_names:

image_full_path = os.path.join(class_path, image_name)

labelList.append(class_name)

image = cv2.imdecode(np.fromfile(image_full_path, dtype=np.uint8), -1)

image = cv2.resize(image, (norm_size, norm_size), interpolation=cv2.INTER_LANCZOS4)

if image.shape[2] >3:

image=image[:,:,:3]

print(image.shape)

image = img_to_array(image)

imageList.append(image)

imageList = np.array(imageList) / 255.0

return imageList

print(“开始加载数据”)

imageArr = loadImageData()

print(“加载数据完成”)

print(labelList)

lb = LabelBinarizer()

labelList = lb.fit_transform(labelList)

print(labelList)

print(lb.classes_)

f = open(‘label_bin.pickle’, “wb”)

f.write(pickle.dumps(lb))

f.close()

做好数据之后,我们需要切分训练集和测试集,一般按照4:1或者7:3的比例来切分。切分数据集使用train_test_split()方法,需要导入from sklearn.model_selection import train_test_split 包。例:

trainX, valX, trainY, valY = train_test_split(imageArr, labelList, test_size=0.2, random_state=42)

4、图像增强


ImageDataGenerator()是keras.preprocessing.image模块中的图片生成器,同时也可以在batch中对数据进行增强,扩充数据集大小,增强模型的泛化能力。比如进行旋转,变形,归一化等等。

keras.preprocessing.image.ImageDataGenerator(featurewise_center=False,samplewise_center

=False, featurewise_std_normalization=False, samplewise_std_normalization=False,zca_whitening=False,

zca_epsilon=1e-06, rotation_range=0.0, width_shift_range=0.0, height_shift_range=0.0,brightness_range=None, shear_range=0.0, zoom_range=0.0,channel_shift_range=0.0, fill_mode=‘nearest’, cval=0.0, horizontal_flip=False, vertical_flip=False, rescale=None, preprocessing_function=None,data_format=None,validation_split=0.0)

参数:

  • featurewise_center: Boolean. 对输入的图片每个通道减去每个通道对应均值。
  • samplewise_center: Boolan. 每张图片减去样本均值, 使得每个样本均值为0。
  • featurewise_std_normalization(): Boolean()
  • samplewise_std_normalization(): Boolean()
  • zca_epsilon(): Default 12-6
  • zca_whitening: Boolean. 去除样本之间的相关性
  • rotation_range(): 旋转范围
  • width_shift_range(): 水平平移范围
  • height_shift_range(): 垂直平移范围
  • shear_range(): float, 透视变换的范围
  • zoom_range(): 缩放范围
  • fill_mode: 填充模式, constant, nearest, reflect
  • cval: fill_mode == 'constant’的时候填充值
  • horizontal_flip(): 水平反转
  • vertical_flip(): 垂直翻转
  • preprocessing_function(): user提供的处理函数
  • data_format(): channels_first或者channels_last
  • validation_split(): 多少数据用于验证集

本例使用的图像增强代码如下:

from tensorflow.keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(

rotation_range=20,

width_shift_range=0.2,

height_shift_range=0.2,

horizontal_flip=True)

val_datagen = ImageDataGenerator() # 验证集不做图片增强

training_generator_mix = MixupGenerator(trainX, trainY, batch_size=batch_size, alpha=0.2, datagen=train_datagen)()

val_generator = val_datagen.flow(valX, valY, batch_size=batch_size, shuffle=True)

注意:只在训练集上做增强,不在验证集上做增强。

5、 保留最好的模型和动态设置学习率


ModelCheckpoint:用来保存成绩最好的模型。

语法如下:

keras.callbacks.ModelCheckpoint(filepath, monitor=‘val_loss’, verbose=0, save_best_only=False, save_weights_only=False, mode=‘auto’, period=1)

该回调函数将在每个epoch后保存模型到filepath

filepath可以是格式化的字符串,里面的占位符将会被epoch值和传入on_epoch_end的logs关键字所填入

例如,filepath若为weights.{epoch:02d-{val_loss:.2f}}.hdf5,则会生成对应epoch和验证集loss的多个文件。

参数

  • filename:字符串,保存模型的路径
  • monitor:需要监视的值
  • verbose:信息展示模式,0或1
  • save_best_only:当设置为True时,将只保存在验证集上性能最好的模型
  • mode:‘auto’,‘min’,‘max’之一,在save_best_only=True时决定性能最佳模型的评判准则,例如,当监测值为val_acc时,模式应为max,当检测值为val_loss时,模式应为min。在auto模式下,评价准则由被监测值的名字自动推断。
  • save_weights_only:若设置为True,则只保存模型权重,否则将保存整个模型(包括模型结构,配置信息等)
  • period:CheckPoint之间的间隔的epoch数

ReduceLROnPlateau:当评价指标不在提升时,减少学习率,语法如下:

keras.callbacks.ReduceLROnPlateau(monitor=‘val_loss’, factor=0.1, patience=10, verbose=0, mode=‘auto’, epsilon=0.0001, cooldown=0, min_lr=0)

当学习停滞时,减少2倍或10倍的学习率常常能获得较好的效果。该回调函数检测指标的情况,如果在patience个epoch中看不到模型性能提升,则减少学习率

参数

  • monitor:被监测的量
  • factor:每次减少学习率的因子,学习率将以lr = lr*factor的形式被减少
  • patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发
  • mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值触发学习率减少。在max模式下,当检测值不再上升则触发学习率减少。
  • epsilon:阈值,用来确定是否进入检测值的“平原区”
  • cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作
  • min_lr:学习率的下限

本例代码如下:

checkpointer = ModelCheckpoint(filepath=‘best_model.hdf5’,

monitor=‘val_accuracy’, verbose=1, save_best_only=True, mode=‘max’)

reduce = ReduceLROnPlateau(monitor=‘val_accuracy’, patience=10,

verbose=1,

factor=0.5,

min_lr=1e-6)

6、建立模型并训练


model = Sequential()

model.add(MobileNetV3Large(input_shape=(224,224,3),include_top=False, pooling=‘avg’, weights=‘imagenet’))

model.add(Dense(classnum, activation=‘softmax’))

model.summary()

optimizer = Adam(learning_rate=INIT_LR)

model.compile(optimizer=optimizer, loss=‘categorical_crossentropy’, metrics=[‘accuracy’])

history = model.fit(training_generator_mix,

steps_per_epoch=trainX.shape[0] / batch_size,

validation_data=val_generator,

epochs=EPOCHS,

validation_steps=valX.shape[0] / batch_size,

callbacks=[checkpointer, reduce])

model.save(‘my_model.h5’)

print(“[INFO] evaluating network…”)

运行结果:

训练了300个epoch,准确率已经过达到了0.80。

image-20220206083557079

7、模型评估


使用classification_report对验证集做评估,导入包from sklearn.metrics import classification_report

predictions = model.predict(x=valX, batch_size=16)

print(classification_report(valY.argmax(axis=1),

predictions.argmax(axis=1), target_names=lb.classes_))

运行结果如下:

image-20220206083626973

8、保留训练结果,并将其生成图片


loss_trend_graph_path = r"WW_loss.jpg"

acc_trend_graph_path = r"WW_acc.jpg"

import matplotlib.pyplot as plt

print(“Now,we start drawing the loss and acc trends graph…”)

summarize history for accuracy

fig = plt.figure(1)

plt.plot(history.history[“accuracy”])

plt.plot(history.history[“val_accuracy”])

plt.title(“Model accuracy”)

plt.ylabel(“accuracy”)

plt.xlabel(“epoch”)

plt.legend([“train”, “test”], loc=“upper left”)

在这里插入图片描述

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值