有关约数知识

约数

试除法求约数 O(sqrt(n))

  • 思路依然为从小到大判断
    vector<int> get_divisors(int n)
    {
        vector<int> res;
        for(int i = 1; i <= n / i; i ++)
            if(n % i == 0)
            {
                res.push_back(n / i);
            }
        sort(res.begin(), res.end());
        return res;
    }
    

约数个数/之和

  • 约数定理
    • 对于一个大于1正整数n可以分解质因数:n=p1^a1 * p2^a2 * p3^a3 * …* pk^ak,
    • 则由约数个数定理可知n的正约数有(a₁+1)(a₂+1)(a₃+1)…(ak+1)个,
    • 那么n的(a₁+1)(a₂+1)(a₃+1)…(ak+1)个正约数的和为
    • f(n)=(p1^0 + p1^1 + p1^2 + … p1 ^a1 )(p2^0 + p2^1 + p2^2 + …p2^a2 )…(pk^0 + pk^1 + pk^2 + …pk^ak)
  • 前提:N = p1^a1 * p2 ^a2…* pk^ak
  • 约数个数
    • (a1+1)(a2+1)…(ak+1)
      -原理:算数基本定理
    • 思路:分解出质因子的底数和质数,再套用公式
unordered_map<int, int> primes;//存储所有的指数和底数
int x;
cin >> x;

for(int i = 2; i < x / i; i ++)
    while(x % i == 0)
    {
        x /= i;
        primes[i] ++;
    }
if(x > 1) primes[x]++;
 for (auto p : primes) res = res * (p.second + 1);
  • 约数之和
    • (p1^0 + p1^1 + … + p1^a1 )…( pk^0 + pk^1 + … +pk^ak )
//分解质数与求个数相同
LL res = 1;
for (auto p : primes)
{
    LL a = p.first, b = p.second;
    LL t = 1;
    while (b -- ) t = (t * a + 1) % mod;
    res = res * t % mod;
}

最大公约数

  • 欧几里得算法(辗转相除法) O(logn)
  • 小性质:若d/a && d/b --> d/(ax + by)
int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值