感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:
① 2000多本Python电子书(主流和经典的书籍应该都有了)
② Python标准库资料(最全中文版)
③ 项目源码(四五十个有趣且经典的练手项目及源码)
④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)
⑤ Python学习路线图(告别不入流的学习)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
#-\*- coding:utf-8 -\*-
import csv
if \_\_name\_\_ == "\_\_main\_\_":
print("python csv文件写读操作示例")
# 写csv文件
print("写入一些简单数据到csv\_data.csv文件中")
with open('csv\_data.csv', 'w', newline='') as csvfile:
spamwriter = csv.writer(csvfile, # 为打开要写的文件对象
delimiter=',' # 分隔符
)
spamwriter.writerow(['csv\_demo'] \* 5 + ['DeepTest'])
spamwriter.writerow(['hello',
'Study Python3', 'Auto Testing'])
csvfile.close()
print("读取csv\_data.csv问内容")
with open('csv\_data.csv', 'r') as f:
reader = csv.reader(f, delimiter=',')
for row in reader:
print("row的类型: ", type(row))
print(row)
# 遍历每行中每个数据项
for data in row:
print(data, " ")
f.close()
在Python csv模块中还提供了另外一种方式来读写csv文件,就是通过字典方式来读写,其提供的主要方法为:DictReader、DictWriter,下面我们一起一个基本的示例,大家可以根据这个示例与上面的示例进行对比,看看有什么不同。
#-\*- coding:utf-8 -\*-
import csv
if \_\_name\_\_ == "\_\_main\_\_":
print("python csv文件字典写读操作示例")
# 写csv文件
print("写入一些简单数据到csv\_dict\_data.csv文件中")
with open('csv\_dict\_data.csv', 'w') as csvfile:
# 写csv头
fieldnames = ['first\_name', 'last\_name']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
# 写csv内容
writer.writerow({'first\_name': 'Baked',
'last\_name': 'Beans'})
writer.writerow({'first\_name': 'Lovely',
'last\_name': 'Spam'})
writer.writerow({'first\_name': 'Wonderful',
'last\_name': 'Spam'})
print("读取csv\_dict\_data.csv问内容")
with open('csv\_dict\_data.csv') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
# 遍历每行中的数据
print(row['first\_name'], row['last\_name'])
本文介绍了csv读写的两种方式,大家可以仔细比对二者的区别,掌握其应用场景。
来源于网络,如若侵犯您的权益,请留言联系我,我会第一时间处理!
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。
别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。
我先来介绍一下这些东西怎么用,文末抱走。
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
(4)200多本电子书
这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。
基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。
(5)Python知识点汇总
知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。
(6)其他资料
还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。
这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!