Python-Matplotlib可视化(1)——一文详解常见统计图的绘制

本文详细介绍了如何使用Python的Matplotlib库读取数据并绘制各种图表,如散点图、条形图(包括单组、多组、堆积和对称)、饼图、直方图和箱形图,以及三角网格图。此外,还提到了使用Numpy库的优化。文章旨在帮助读者掌握Matplotlib在数据可视化中的应用。
摘要由CSDN通过智能技术生成

读取数据和绘制的代码如下:

read_txt.py

import matplotlib.pyplot as plt

x, y = [], []

for line in open(‘data.txt’, ‘r’):

values = [float(s) for s in line.split()]

x.append(values[0])

y.append(values[1])

plt.plot(x, y)

plt.show()

如果使用Numpy库,其等效代码可以写为:

import matplotlib.pyplot as plt

import numpy as np

data = np.loadtxt(‘data.txt’)

plt.plot(data[:,0], data[:,1])

plt.show()

绘制图形

散点图


当绘制曲线图时,我们假设点与点之间存在序列关系。而散点图是简单地绘制点,它们之间并不存在连接。

import numpy as np

import matplotlib.pyplot as plt

data = np.random.rand(1000, 2)

plt.scatter(data[:,0], data[:,1])

plt.show()

散点图Tips:函数plt.scatter()的调用方式与plt.plot()完全相同,分别将点的x和y坐标作为输入参数。

条形图


条形图具有丰富的表现形式,常见的类型包括单组条形图,多组条形图,堆积条形图和对称条形图等。

单组条形图

条形图的每种表现形式都可以绘制成垂直条形图或水平条形图,以单组条形图的两种绘制方式为例。

垂直条形图

import matplotlib.pyplot as plt

data = [10., 20., 5., 15.]

plt.bar(range(len(data)), data)

plt.show()

垂直条形图Tips:plt.plot()函数的作用是:接收两个参数,包括每个条形的x坐标和每个条行的高度。</

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值