最新python DataFrame的shift()方法(1),2024年BATJ30套大厂Python经典高频面试题

在这里插入图片描述

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

在这里插入图片描述在这里插入图片描述在这里插入图片描述

语法

========================================================================

DataFrame.shift(periods=1, freq=None, axis=0)

  • periods可以理解为移动幅度的次数,shift默认一次移动1个单位,也默认移动1次(periods默认为1),则移动的长度为1 * periods。

periods可以是正数,也可以是负数。负数表示前滞,正数表示后滞。

  • freq是一个可选参数,默认为None,可以设为一个timedelta对象。适用于索引为时间序列数据时。

freq为None时,移动的是其他数据的值,即移动periods*1个单位长度。

freq部位None时,移动的是时间序列索引的值,移动的长度为periods * freq个单位长度。

  • axis默认为0,表示对列操作。如果为行则表示对行操作。

移动滞后没有对应值的默认为NaN。

在这里插入图片描述


示例

========================================================================


period为正,无freq


import pandas as pd

pd.set_option(‘display.unicode.east_asian_width’, True)

data = [51.0, 52.33, 51.21, 54.23, 56.78]

index = [‘2022-2-28’, ‘2022-3-1’, ‘2022-3-2’, ‘2022-3-3’, ‘2022-3-4’]

df = pd.DataFrame(data=data, index=index, columns=[‘close’])

df.index.name = ‘date’

print(df)

print(“=========================================”)

df[‘昨收’] = df[‘close’].shift()

df[‘change’] = df[‘close’] - df[‘close’].shift()

print(df)

在这里插入图片描述


period为负,无freq


import pandas as pd

pd.set_option(‘display.unicode.east_asian_width’, True)

data = [51.0, 52.33, 51.21, 54.23, 56.78]

index = [‘2022-2-28’, ‘2022-3-1’, ‘2022-3-2’, ‘2022-3-3’, ‘2022-3-4’]

index = pd.to_datetime(index)

index.name = ‘date’

df = pd.DataFrame(data=data, index=index, columns=[‘昨收’])

print(df)

print(“=========================================”)

df[‘close’] = df[‘昨收’].shift(-1)

df[‘change’] = df[‘昨收’].shift(-1) - df[‘close’]

print(df)

在这里插入图片描述


period为正,freq为正


import pandas as pd

import datetime

pd.set_option(‘display.unicode.east_asian_width’, True)

data = [51.0, 52.33, 51.21, 54.23, 56.78]

做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。

别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。

我先来介绍一下这些东西怎么用,文末抱走。


(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

(4)200多本电子书

这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。

基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。

(5)Python知识点汇总

知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。

在这里插入图片描述

(6)其他资料

还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。

在这里插入图片描述

这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值