利用python进行数学公式识别_python 识别图片中的数学公式(1)

# 循环识别以下图片
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np

for i in range(1,5):
    img = Image.open(f'{i}.png')
    m = np.asarray(img)
    plt.figure(figsize=(18,24))
    plt.imshow(m)
    plt.show()
    print('识别结果'+'\*'\*30)
    pic2latex(f'{i}.png')

在这里插入图片描述
output_8_0

识别结果******************************


100%|███████████████████████████████████████████| 1/1 [00:00<00:00, 21.77it/s]


f(x)={\frac{1}{\sqrt{2\pi}\sigma}}\mathrm{e}^{-{\frac{(x-\mu)^{2}}{2\sigma^{2}}}}

在这里插入图片描述
output_8_4

识别结果******************************


100%|███████████████████████████████████████████| 1/1 [00:00<00:00, 23.07it/s]


\begin{array}{c}{{f_{x}(x)=\int_{-\infty}^{\infty}f(x,y)\,\mathrm{d}y=\int_{0}^{1}{\frac{x+2y}{4}}\,\mathrm{d}y}}\\ {{\ }}\\ {{\ }}\\ {{\ }}\\ {{={\frac{x y+y^{2}}{4}}{\binom{x}{4}}\end{array}^{1}{\binom{x+1}{4}}}}\end{array}

在这里插入图片描述

output_8_8

识别结果******************************


100%|███████████████████████████████████████████| 1/1 [00:00<00:00, 23.38it/s]

十(-1)0-
tanh(-6.
8厂
eaD sinh 3.z2)(e一告J1 -1

1+ 2esD cosh(麦6.72

在这里插入图片描述
output_8_12

识别结果******************************


100%|███████████████████████████████████████████| 1/1 [00:00<00:00, 21.11it/s]


I(Y|X)=\sum_{x\in{\mathcal{A}},\mathfrak{p}\in{\mathcal{Y}}}p(x,y)\log\left({\frac{p(x)}{p(x,y)}}\right)

发现第二张图片和第三张图片无法识别/识别错误。

  • f(x)=12πσe−(x−μ)22σ2
  • 识别异常
  • 明显不对
  • I(Y|X)=∑x∈A,p∈Yp(x,y)log⁡(p(x)p(x,y))

站在巨人的肩膀上

前面发现Pix2Text在特别复杂的公式识别上较差,那有没有更好的开源项目呢?应该是有的,感兴趣的同学可以自行在github中挖掘哈,如果挖掘到宝了还望不吝赐教。

这里介绍两个大佬自行开发的在线公式识别网站:

  • [simpletex]:无限制次数,无需登录,识别效果优于Pix2Text
  • [LaTeX公式编辑器]:B 站科普UP主(妈咪说MommyTalk)搭建,采用Mathpix的API。需要登陆,每日免费次数2次,可付费增加使用次数,识别效果优于simpletex(Mathpix果然是神器)

自学成才

当然了,还有一种一劳永逸的办法,就是学会latex语法。这个LaTeX公式编辑器的**[帮助文档]**写的很清晰,可以学习学习。不过对于复杂的数学公式,还是建议利用这几种方法进行识别。对于简单的数学公式自己手写就足够了,也不是很复杂。

总结

数学公式识别无论是做科研、学习笔记、技术分享都是必不可少的,不差钱或者频繁使用的的建议买个Mathpix,使用体验极佳,偶尔使用或者不想花钱的就可以尝试本文的几种方法。个人建议掌握基础的latex语法,对于简单的公式可以自行手写,稍微复杂的公式可以使用Pix2Text识别或者simpletex在线识别,过于复杂的使用LaTeX公式编辑器在线识别

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

点此免费领取:CSDN大礼包:《python学习路线&全套学习资料》免费分享

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、Python必备开发工具

在这里插入图片描述

三、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

五、Python练习题

检查学习结果。
在这里插入图片描述
这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

👉[[CSDN大礼包:《python安装包&全套学习资料》免费分享]]安全链接,放心点击

文末有福利领取哦~

👉一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。img

👉二、Python必备开发工具

img
👉三、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
img

👉 四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
img

👉五、Python练习题

检查学习结果。
img

👉六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
img

img

👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值