基于MATLAB的人眼开度疲劳检测识别
一、课题背景
目前,随着人们生活水平的提高,各国人民汽车保有量也越来越多,伴随而来的是交通事故也在不断增多。研究表明,疲劳驾驶是造成交通事故日益严重的重要原因。开展驾驶员疲劳检测和预警的研究工作,有着十分重要的现实意义。
本文研究的主要内容包括:人脸检测、人眼定位、眼睛特征提取和状态识别、疲劳程度的计算等算法的原理及实现。
研究旨在协助驾驶员提高行车安全, 减少疲劳驾驶带来的隐患。检测汽车驾驶员的唤
醒状态, 若得到疲劳信息, 则发出警报。边缘检测算法, 边界跟踪算法以及人眼定位算法以实现对驾驶员的监测; 设计中定义眼睛闭合度的参数, 衡量所采集到的眼睛图像的纵横之比, 使系统对不同的人或同一个人的不同状态进行测量, 保证实际应用价值。
关键词:驾驶安全;边缘检测算法;Hough变换;人眼定位算法;闭合度参数
二、 人眼疲劳识别研究现状
目前眼睛的识别方法基本上分为两类:一是基于被动图像处理的传统方法,此方法主要包括基于模板的方法、基于外观的方法和基于特征的方法。二是基于主动红外的方法。传统的被动图像处理方法主要是通过探测眼部与脸部其他部位的外观或形状差异来实现的,受外界光照条件的影响很大,而且在夜间不可以识别,所以目前主要的研究方法是基于主动红外的方法。
2.1 国外研究现状
目前国外的许多国家都对汽车安全方面投入了大量的资金,用来解决交通安全的问题。许多高校和科研机构也都在该方面进行了大量的研究,并得了丰硕成果。进入 21 世纪后,计算机视觉和集成电路技术的发展给驾驶疲劳检测的研究拓宽了空间,之进入了黄金时期。下面介绍几种国外的典型试验产品。
脑电图(EEG)信号检测:澳大利亚 University of Sydney 健康研究中心在采集了不同驾驶员的脑电图信号之后,利用人工神经网络对其进行处理,主要是提取不同波段不同脑电图的典型特征并对其进行分类,并由此来判断驾驶员是否疲劳。另外,为了准确、快速的得到脑电图信号,Tran 等人利用集中趋势测量法所定义的二阶差分结构和采样熵对采集的脑电图信号进行非线性分析和处理,从而判断驾驶员是否处于疲劳状态。新西兰研究人员发明的监控报警器用于监控驾驶员在驾驶过程中脑电波以及眼睛的活动情况,可以测定驾驶员是否处于疲劳状态以及驾驶员的脑意识是否出现停顿,必要时会自动向驾驶员发出警报。日本 canon KK 提供的作为脑电波连接刺激发生器的防瞌睡装置安置于被检者头部,当由脑电波检测确定被检者处于瞌睡状态时,即发出语音报警。
心电图(ECG)信号检测:Calcagnini 等人发现心电图信号的几个典型特征在驾驶员疲劳和清醒时有着明显的不同,比如高频能量、低频能量、超低频能量及低频能量/高频能量的比率等等,利用心电图可以判断驾驶员是否疲劳。另外,韩国 Jeong等人同样在采集驾驶员的心电图信号之后,分析驾驶员的心率变化情况进而来判断驾驶员是否疲劳。日本先锋公司