手势识别在Matlab中的仿真设计

本文介绍了在Matlab中实现手势识别的算法流程,包括图像预处理(灰度化、边缘检测和平滑)、手势分割(二值化和边缘检测)。通过预处理减少干扰,然后进行二值化和边缘检测,提取手势特征,以提高识别准确率。
摘要由CSDN通过智能技术生成

手势识别在Matlab中的仿真设计

一、课题背景介绍

手势识别在当下成为热点研究,足可以证明手势识 别技术的重要性,该技术不仅仅可以实现人机交互,还可 以应用于其他高新技术,如对软件的控制,与物联网技术 的结合,与5G技术的融合。手势识别技术还可以与正在 应用中的声音识别、指纹识别和面部识别组合成安全系 数更高的电子锁。总之,手势识别可以应用于生活中的方 方面面,从而大大提高人们的生活幸福感。本文中所写的 手势识别系统的手势识别流程图。

二、算法流程

1图像预处理

图像预处理的目的是将图像复杂的背景和噪声去 除,弱化背景和噪音等无用的信息对手势分割和识别的 干扰,突出图片中存在的重要信息。图像预处理的历程包 括:灰度化、边缘检测和平滑等。

1.1灰度化

RGB色彩空间,如图2所示,以R(red)、G(green)、B (blue)三种基本色为基础。在RBG色彩空间中,所有的颜 色都是由红、绿、蓝三种色光按照不同的比例混合而成 的。一组三原色光便是一个最小的表现单元。

本文经由过程使用加权平均法将手势图片转换为灰 度图像,实现图像灰度化。

R=G-B=(WrR+WgG+WbB)/3 (1)

其中,R、G、B三个分传分别表示红、绿、蓝三种颜色, Mr是R的权值,叩g是G的权值,Mb是B的权值,Mr、 Wg.Wb取不同的值,将形成不同的灰度图像E。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值