基于AIC,MDL,HQ,EDC算法实现阵列信号的信源数目估计附MATLAB代码

文章介绍了使用Matlab进行信源数目估计的基本步骤,涉及AIC、MDL、HQ和EDC等信息准则方法。通过数据采集、协方差矩阵构建、模型选择等步骤,结合代码示例展示了如何在不同信噪比下应用这些准则。强调了每个准则在平衡模型复杂度和拟合度上的差异,并提到实际应用中需考虑噪声处理和模型验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

⛄ 内容介绍

AIC (Akaike Information Criterion)、MDL (Minimum Description Length)、HQ (Hannan-Quinn) 和 EDC (Equivalent Degrees of Freedom Criterion) 算法是常用的基于信息准则的方法,用于估计阵列信号的信源数目。以下是基本的步骤框架:

  1. 数据采集:使用阵列接收器进行数据采集,并将接收到的信号进行预处理和校正。

  2. 构建协方差矩阵:利用接收阵列的数据,构建协方差矩阵,该矩阵描述了信号之间的相关性和传感器之间的相互关系。

  3. 选择模型阶数范围:确定可能的信源数目范围,并设定一个较小值作为最小信源数(例如1个),以及一个较大值作为最大信源数(根据实际情况确定)。

  4. 对每个信源数目进行估计:针对每个信源数目,在协方差矩阵上运AIC、MDL、HQ或EDC),根据其给值对模型进行评估。

  5. 模型选择:根据使用的信息准则(AIC、MDL、HQ或EDC)选择适当的信源数目,通常选择具有最小准则值的数目。

需要注意的是,每个(AIC、MDL、HQ和EDC)使用不同平衡模型复杂度和拟合优良度。因此,在应用这些准则时,可以基于具体问题和数据集选择适合的准则。

以上提供的框架只是一个基本指导,并且可以根据具体要求进行调整和改进。在实践中,可能需要仔细处理噪声和阵列特性,并对数据进行统计分析和模型验证,以获得更准确的信源数目估计结果。

⛄ 部分代码

clc;clear ;close all;ticM=16;%阵列的天线数N=3;%信源数snap=1000;%快拍数目L=snap;C=3e8;lamda=0.2;f0=C/lamda;d=0.5*lamda;% k=d/lamda;theta0=5;theta1=20;theta2=40;fs=1000;ts=1/fs;t=(0:snap-1)*ts;a=[0:M-1]';%阵列矢量u0=5;u1=10;u2=20;%相干信号源 s0=exp(j*2*pi*(f0*t+0.5*u0*t.^2));s1=exp(j*2*pi*(f0*t+0.5*u1*t.^2));s2=exp(j*2*pi*(f0*t+0.5*u2*t.^2));%阵列流行矢量a_theta0=exp(j*2*pi*d/lamda*a*sin(theta0/180*pi));a_theta1=exp(j*2*pi*d/lamda*a*sin(theta1/180*pi));a_theta2=exp(j*2*pi*d/lamda*a*sin(theta2/180*pi));A=[a_theta0 a_theta1 a_theta2];%子阵的导向矢量,每个子阵完全相同S=[s0;s1;s2];X0=A*S;R_s=S*S';snr=[-20 -10 0 10 20]; %信噪比for jj=1:length(snr)    %产生满足一定信躁比的噪声    randn('state',0);    real_noise=randn(size(X0)); end    figure(1);plot(1:M-1,AIC(1:length(snr),:));grid on;title('AIC');legend('-20dB','-10dB','0dB','10dB','20dB');figure(2);plot(1:M-1,MDL(1:length(snr),:));grid on;title('MDL');legend('-20dB','-10dB','0dB','10dB','20dB');figure(3);plot(1:M-1,HQ(1:length(snr),:));grid on;title('HQ');legend('-20dB','-10dB','0dB','10dB','20dB');figure(4);plot(1:M-1,EDC(1:length(snr),:));grid on;title('EDC');legend('-20dB','-10dB','0dB','10dB','20dB');

⛄ 运行结果

⛄ 参考文献

[1] 刘子龙.信源数目估计方法的研究[J].电子测试, 2012(5):3.DOI:10.3969/j.issn.1000-8519.2012.05.003.

[2] 叶中付,向利,徐旭.基于信息论准则的信源个数估计算法改进[J].电波科学学报, 2007, 22(4):6.DOI:10.3969/j.issn.1005-0388.2007.04.011.

[3] 房明星,孔辉,王杰贵,等.基于特征值分布的信源数目估计[J].电子对抗, 2013(2):5.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 %% 开发者:Matlab科研助手 %% 更多咨询关注天天Matlab微信公众号 ### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位 ##### 6.2 无线传感器覆盖优化 ##### 6.3 室内定位 ##### 6.4 无线传感器通信及优化 ##### 6.5 无人机通信中继优化 #####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值