✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
随着科技的不断发展,我们现在可以通过多种方式获取到地球上任意一个地点的经纬度。这为我们了解当地的天文现象提供了便利。其中,计算太阳和月亮的升起和落下时间以及黄昏时间是非常有用的。在本文中,我们将探讨如何根据已知的经纬度来计算这些时间。
首先,让我们来了解一下天文学中的一些基本概念。在地球上观测天文现象时,我们通常使用地平坐标系来描述天体的位置。在这个坐标系中,天体的位置由两个参数确定:方位角和高度角。方位角是从正北方向开始逆时针测量的角度,范围是0到360度。高度角是天体与地平面的夹角,范围是0到90度。
太阳和月亮的升起和落下时间以及黄昏时间与方位角和高度角有关。当太阳或月亮的高度角达到0度时,它们会升起或落下。黄昏时间是指太阳下山后到全黑之间的时间段。在这个时间段内,天空还有一些残留的光亮,但足够让我们看清周围的物体。
现在,让我们来看看如何计算这些时间。我们可以使用天文算法来计算太阳和月亮的高度角和方位角。这些算法基于天体的位置和时间来计算。对于太阳,我们可以使用日心黄道坐标系来计算它的位置。对于月亮,我们可以使用月心黄道坐标系来计算它的位置。
一旦我们计算出了太阳和月亮的高度角和方位角,我们就可以使用以下公式来计算它们的升起和落下时间:
cos(H) = (sin(-0.8333) - sin(φ) × sin(δ)) / (cos(φ) × cos(δ))
其中,H是天体的高度角,φ是观测地点的纬度,δ是天体的赤纬。当cos(H)大于1时,太阳或月亮永远不会升起或落下。当cos(H)小于-1时,太阳或月亮始终在地平线以下。在这种情况下,我们可以使用以下公式计算它们的升起和落下时间:
t = acos(-tan(φ) × tan(δ)) / 15
其中,t是时间,单位是小时。当cos(H)在-1和1之间时,我们可以使用以下公式计算升起和落下时间:
t = (H ± L) / 15 + RA - 6.6974
其中,L是地理经度,RA是天体的赤经。当天体为太阳时,我们需要将6.6974改为-12。
计算黄昏时间也很简单。我们可以使用以下公式:
t = (cos(-6°) - sin(φ) × sin(δ)) / (cos(φ) × cos(δ))
其中,t是时间,单位是小时。当t为负数时,太阳还没有下山。当t为正数时,太阳已经下山。
在现代世界中,我们可以使用各种软件和工具来计算太阳和月亮的升起和落下时间以及黄昏时间。例如,天文爱好者可以使用Stellarium等免费软件来观测天体。对于专业的天文学家和天文学研究者来说,他们通常会使用更为精确的工具来进行计算。
总之,计算太阳和月亮的升起和落下时间以及黄昏时间是非常有用的。它们可以帮助我们了解当地的天文现象,并规划我们的活动。通过使用天文算法和现代工具,我们可以轻松地计算这些时间,并享受到美妙的天文之旅。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] SUN Nan,孙楠,ZHU Kai-jia,等."月上柳梢头,人约黄昏后"模型的建立与求解[C]//中国工业与应用数学学会.中国工业与应用数学学会, 2015.
[2] CHEN Chao,陈超,ZHANG Tian-lin,等.古典诗词中天文现象的数学模型[C]//中国工业与应用数学学会.中国工业与应用数学学会, 2015.
[3] 沈曙昀,王立,郭三敏,等.基于几何方法对太阳影子定位的研究[J].河北北方学院学报:自然科学版, 2017, 33(1):7.DOI:10.3969/j.issn.1673-1492.2017.01.005.