【宽度学习回归预测】基于沙丘猫算法优化宽度学习神经网络SCSO-BLS实现多输入单输出瓦斯回归预测附matlab代码

 ✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

在当今大数据时代,数据挖掘和预测分析成为了各行各业的重要工具。特别是在工业领域,瓦斯回归预测对于安全生产至关重要。为了提高瓦斯回归预测的准确性和效率,研究人员们不断探索新的算法和模型。在这篇博文中,我们将讨论基于沙丘猫算法优化宽度学习神经网络SCSO-BLS实现多输入单输出瓦斯回归预测的方法和应用。

首先,让我们简要介绍一下沙丘猫算法和宽度学习神经网络SCSO-BLS。沙丘猫算法是一种新型的优化算法,它模拟了沙丘猫在寻找食物时的行为,通过不断迭代寻找最优解。而宽度学习神经网络SCSO-BLS是一种结合了宽度学习和序列化优化的神经网络模型,能够有效处理多输入单输出的预测问题。

在瓦斯回归预测中,通常会涉及到多个输入变量,例如温度、湿度、风速等因素,而输出变量则是瓦斯浓度。传统的回归分析方法往往难以处理多个输入变量之间的复杂关系,因此需要更加灵活和强大的模型来进行预测。

基于沙丘猫算法优化宽度学习神经网络SCSO-BLS实现多输入单输出瓦斯回归预测的方法如下:首先,我们需要收集并准备好瓦斯回归预测所需的数据集,包括输入变量和输出变量。然后,利用沙丘猫算法对宽度学习神经网络SCSO-BLS的结构和参数进行优化,以提高模型的拟合能力和泛化能力。接下来,将数据集划分为训练集和测试集,利用训练集对模型进行训练,并利用测试集对模型进行评估和验证。最后,根据模型的预测能力和准确性,进行必要的调整和优化。

通过基于沙丘猫算法优化宽度学习神经网络SCSO-BLS实现多输入单输出瓦斯回归预测的方法,我们可以获得更加准确和可靠的预测结果,为工业生产提供更加可靠的安全保障。同时,这种方法也为其他类似的预测问题提供了新的思路和方法。

总之,基于沙丘猫算法优化宽度学习神经网络SCSO-BLS实现多输入单输出瓦斯回归预测是一种创新的方法,能够有效提高瓦斯回归预测的准确性和效率。我们期待这种方法能够在工业领域得到更广泛的应用,并为相关领域的研究人员提供新的启发和思路。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

本程序参考以下中文EI期刊,程序注释清晰,干货满满。

[1]智登奎,李国勇.基于遗传算法优化神经网络瓦斯浓度预测[J].矿山机械, 2013, 41(4):4.DOI:CNKI:SUN:KSJX.0.2013-04-036.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值