✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
在当今大数据时代,数据挖掘和预测分析成为了各行各业的重要工具。特别是在工业领域,瓦斯回归预测对于安全生产至关重要。为了提高瓦斯回归预测的准确性和效率,研究人员们不断探索新的算法和模型。在这篇博文中,我们将讨论基于沙丘猫算法优化宽度学习神经网络SCSO-BLS实现多输入单输出瓦斯回归预测的方法和应用。
首先,让我们简要介绍一下沙丘猫算法和宽度学习神经网络SCSO-BLS。沙丘猫算法是一种新型的优化算法,它模拟了沙丘猫在寻找食物时的行为,通过不断迭代寻找最优解。而宽度学习神经网络SCSO-BLS是一种结合了宽度学习和序列化优化的神经网络模型,能够有效处理多输入单输出的预测问题。
在瓦斯回归预测中,通常会涉及到多个输入变量,例如温度、湿度、风速等因素,而输出变量则是瓦斯浓度。传统的回归分析方法往往难以处理多个输入变量之间的复杂关系,因此需要更加灵活和强大的模型来进行预测。
基于沙丘猫算法优化宽度学习神经网络SCSO-BLS实现多输入单输出瓦斯回归预测的方法如下:首先,我们需要收集并准备好瓦斯回归预测所需的数据集,包括输入变量和输出变量。然后,利用沙丘猫算法对宽度学习神经网络SCSO-BLS的结构和参数进行优化,以提高模型的拟合能力和泛化能力。接下来,将数据集划分为训练集和测试集,利用训练集对模型进行训练,并利用测试集对模型进行评估和验证。最后,根据模型的预测能力和准确性,进行必要的调整和优化。
通过基于沙丘猫算法优化宽度学习神经网络SCSO-BLS实现多输入单输出瓦斯回归预测的方法,我们可以获得更加准确和可靠的预测结果,为工业生产提供更加可靠的安全保障。同时,这种方法也为其他类似的预测问题提供了新的思路和方法。
总之,基于沙丘猫算法优化宽度学习神经网络SCSO-BLS实现多输入单输出瓦斯回归预测是一种创新的方法,能够有效提高瓦斯回归预测的准确性和效率。我们期待这种方法能够在工业领域得到更广泛的应用,并为相关领域的研究人员提供新的启发和思路。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
本程序参考以下中文EI期刊,程序注释清晰,干货满满。
[1]智登奎,李国勇.基于遗传算法优化神经网络瓦斯浓度预测[J].矿山机械, 2013, 41(4):4.DOI:CNKI:SUN:KSJX.0.2013-04-036.