【无人机编队】基于匈牙利算法实现无人机编队队形实时切换附Matlab代码

文章探讨了如何利用匈牙利算法解决无人机编队队形的实时切换问题,构建成本矩阵考虑因素,结合预测控制和约束条件以实现稳定性,同时面临实时性和动态环境的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 ✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

无人机技术的发展已经成为当今世界的热点话题之一。无人机编队技术作为无人机领域的重要研究方向之一,对于提高无人机的协同作战能力和应用价值具有重要意义。在无人机编队技术中,队形的实时切换是一个关键问题,而基于匈牙利算法实现无人机编队队形的实时切换成为了研究的热点之一。

匈牙利算法是一种用于解决指派问题的算法,它可以高效地找到最优的指派方案。在无人机编队中,队形的切换可以看作是一个指派问题,即将每架无人机指派到新的位置,使得整个编队的队形达到最优。因此,利用匈牙利算法来实现无人机编队队形的实时切换具有很大的潜力。

基于匈牙利算法实现无人机编队队形实时切换的关键在于如何构建指派问题的成本矩阵。成本矩阵的每个元素表示将某架无人机指派到某个位置的成本,而这个成本可以根据编队的要求来确定。一般来说,成本可以包括无人机之间的距离、速度、方向等因素。通过合理地构建成本矩阵,可以将队形的实时切换问题转化为一个指派问题,从而利用匈牙利算法来解决。

除了构建成本矩阵,基于匈牙利算法实现无人机编队队形实时切换还需要考虑到实时性和稳定性。在实际应用中,无人机编队往往需要在动态环境中进行任务执行,因此队形的实时切换需要在较短的时间内完成,并且要保持编队的稳定性,避免发生碰撞或混乱。因此,如何在保证实时性的同时保持稳定性成为了一个挑战。

针对这一挑战,研究人员提出了一些解决方案。例如,可以将匈牙利算法与预测控制方法相结合,利用预测控制方法对无人机的运动进行预测,从而在实现实时性的同时避免碰撞。此外,也可以引入一些约束条件来限制无人机的运动范围,从而保证队形的稳定性。这些方法为基于匈牙利算法实现无人机编队队形的实时切换提供了一些思路。

总的来说,基于匈牙利算法实现无人机编队队形的实时切换是一个具有挑战性的课题,但也是具有很大潜力的研究方向。随着无人机技术的不断发展和成熟,相信基于匈牙利算法的无人机编队技术将会得到更广泛的应用,并为无人机的协同作战能力和应用价值带来新的突破。

📣 部分代码

clc;clear all;% 做 8*8 矩阵 19 个点  字符:Farray_f = [0 1 1 1 1 1 1 0;           0 0 1 0 0 0 0 0;           0 0 1 0 0 1 0 0;           0 0 1 1 1 1 0 0;           0 0 0 0 0 1 0 0;           0 0 1 0 0 0 0 0;           0 0 1 0 0 0 0 0;           0 1 1 1 0 0 0 0];       % 做 8*8 矩阵 19 个点  字符:Zarray_z = [0 1 1 1 1 1 1 0;           0 1 0 0 0 1 0 0;           0 0 0 0 1 0 0 0;           0 0 0 1 0 0 0 0;           0 0 0 1 0 0 0 0;           0 0 1 0 0 0 0 0;           0 0 0 0 0 1 0 0;           1 1 1 1 1 1 0 0];%% show figure(1)% for i=1:8 %     for j=1:8 %         if array_f(i,j)==1%             plot([j],[8-i],'bo');%             hold on;%         end%     end% end% %  figure(2)% for i=1:8 %     for j=1:8 %         if array_z(i,j)==1%             plot([j],[8-i],'bo');%             hold on;%         end%     end% end%% FZ矩阵转换T0T1%F矩阵转换为坐标T0:T0=zeros(19,3);n = 1;for i=1:8    for j=1:8        if array_f(i,j) == 1            T0(n,:) = [i,j,0];            n = n + 1;        end    endend%Z矩阵转换为坐标T1:T1=zeros(19,3);n = 1;for i=1:8    for j=1:8        if array_z(i,j) == 1            T1(n,:) = [i,j,0];            n = n + 1;        end    endend%% 显示结果% for i=1:19%     for j=1:19%         if a(i,j) == 1 && ~isequal(T0(i,:), T1(j,:))%             axis([0 10 0 10]);%             plot(T0(i,2),9-T0(i,1),'go');%             hold on;%             plot(T1(j,2),9-T1(j,1),'ro');%             hold on;%             plot([T0(i,2),T1(j,2)],[9-T0(i,1),9-T1(j,1)]);%             hold on;%             %         end%     end% end%% 对应关系for i=1:19    for j=1:19        if a(i,j) == 1             A(i,:)=[T0(i,2),9-T0(i,1)];            B(i,:)=[T1(j,2),9-T1(j,1)];        end    endend%% 动态显示结果 run(A,B);

⛳️ 运行结果

🔗 参考文献

[1] 盛汉霖,叶勇杰,李嘉诚,等.一种基于匈牙利算法的多无人机编队航迹规划方法:CN201810501648.5[P].CN108733074A[2023-12-19].

[2] 姜鸿儒,范云锋,徐亚周,等.基于动态角色分配的一致性协同无人机编队控制[J].计算机测量与控制, 2023, 31(5):126-131.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值