✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 绪论
心电图(ECG)信号是反映心脏电活动的生物电信号,广泛应用于临床诊断和治疗。然而,ECG信号很容易受到各种噪声的干扰,如肌电噪声、工频干扰、呼吸噪声等,这些噪声会掩盖ECG信号的特征信息,影响诊断的准确性。因此,ECG信号去噪是ECG信号处理中的一个重要环节。
2. 完备经验模态分解(CEEMDAN)算法
完备经验模态分解(CEEMDAN)算法是一种自适应噪声的完备经验模态分解算法,它可以有效地从ECG信号中分离出噪声分量,同时保留ECG信号的特征信息。CEEMDAN算法的基本思想是:将ECG信号分解为一组本征模态函数(IMF),然后将这些IMF分为信号分量和噪声分量。信号分量包含ECG信号的特征信息,而噪声分量包含各种噪声。
3. CEEMDAN算法的实现步骤
CEEMDAN算法的实现步骤如下:
-
对ECG信号进行预处理,包括去除基线漂移、滤波等。
-
将ECG信号分解为一组IMF。
-
计算每个IMF的能量。
-
将能量较低的IMF作为噪声分量,将能量较高的IMF作为信号分量。
-
重构ECG信号,即用信号分量之和来代替原始ECG信号。
4. CEEMDAN算法的性能评价
CEEMDAN算法的性能评价通常使用信噪比(SNR)和均方根误差(RMSE)两个指标。SNR是指信号分量与噪声分量的功率比,RMSE是指重构ECG信号与原始ECG信号之间的误差。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
5. CEEMDAN算法在ECG信号去噪中的应用
CEEMDAN算法已经成功地应用于ECG信号去噪。实验结果表明,CEEMDAN算法可以有效地从ECG信号中分离出噪声分量,同时保留ECG信号的特征信息。CEEMDAN算法的去噪性能优于传统的滤波方法,如小波变换、卡尔曼滤波等。
6. 结论
CEEMDAN算法是一种自适应噪声的完备经验模态分解算法,它可以有效地从ECG信号中分离出噪声分量,同时保留ECG信号的特征信息。CEEMDAN算法的去噪性能优于传统的滤波方法,如小波变换、卡尔曼滤波等。CEEMDAN算法已经成功地应用于ECG信号去噪,并取得了良好的效果。
🔗 参考文献
[1] 蔡俊,张翔风.CEEMDAN-小波包联合算法在ECG中的降噪应用[J].黑龙江工业学院学报:综合版, 2022, 22(12):41-49.
[2] 李鑫,王双银,黄毓林,等.基于两阶段分解策略的月径流模拟模型研究[J].水电能源科学, 2023(009):041.