【信号去噪-CEEMDAN】基于自适应噪声的完备经验模态分解CEEMDAN算法实现ECG信号去噪附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

1. 绪论

心电图(ECG)信号是反映心脏电活动的生物电信号,广泛应用于临床诊断和治疗。然而,ECG信号很容易受到各种噪声的干扰,如肌电噪声、工频干扰、呼吸噪声等,这些噪声会掩盖ECG信号的特征信息,影响诊断的准确性。因此,ECG信号去噪是ECG信号处理中的一个重要环节。

2. 完备经验模态分解(CEEMDAN)算法

完备经验模态分解(CEEMDAN)算法是一种自适应噪声的完备经验模态分解算法,它可以有效地从ECG信号中分离出噪声分量,同时保留ECG信号的特征信息。CEEMDAN算法的基本思想是:将ECG信号分解为一组本征模态函数(IMF),然后将这些IMF分为信号分量和噪声分量。信号分量包含ECG信号的特征信息,而噪声分量包含各种噪声。

3. CEEMDAN算法的实现步骤

CEEMDAN算法的实现步骤如下:

  1. 对ECG信号进行预处理,包括去除基线漂移、滤波等。

  2. 将ECG信号分解为一组IMF。

  3. 计算每个IMF的能量。

  4. 将能量较低的IMF作为噪声分量,将能量较高的IMF作为信号分量。

  5. 重构ECG信号,即用信号分量之和来代替原始ECG信号。

4. CEEMDAN算法的性能评价

CEEMDAN算法的性能评价通常使用信噪比(SNR)和均方根误差(RMSE)两个指标。SNR是指信号分量与噪声分量的功率比,RMSE是指重构ECG信号与原始ECG信号之间的误差。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

5. CEEMDAN算法在ECG信号去噪中的应用

CEEMDAN算法已经成功地应用于ECG信号去噪。实验结果表明,CEEMDAN算法可以有效地从ECG信号中分离出噪声分量,同时保留ECG信号的特征信息。CEEMDAN算法的去噪性能优于传统的滤波方法,如小波变换、卡尔曼滤波等。

6. 结论

CEEMDAN算法是一种自适应噪声的完备经验模态分解算法,它可以有效地从ECG信号中分离出噪声分量,同时保留ECG信号的特征信息。CEEMDAN算法的去噪性能优于传统的滤波方法,如小波变换、卡尔曼滤波等。CEEMDAN算法已经成功地应用于ECG信号去噪,并取得了良好的效果。

🔗 参考文献

[1] 蔡俊,张翔风.CEEMDAN-小波包联合算法在ECG中的降噪应用[J].黑龙江工业学院学报:综合版, 2022, 22(12):41-49.

[2] 李鑫,王双银,黄毓林,等.基于两阶段分解策略的月径流模拟模型研究[J].水电能源科学, 2023(009):041.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值