【能耗优化】基于多目标粒子群算法地铁牵引能耗优化附matlab代码

本文提出了一种使用多目标粒子群算法来降低地铁牵引能耗的方法,通过建立包含能耗、运行时间、成本等因素的优化模型,并在仿真实验中展示了其有效性和约束满足能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 ✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要

随着城市轨道交通的快速发展,地铁牵引能耗已成为城市轨道交通运营成本的重要组成部分。为了降低地铁牵引能耗,本文提出了一种基于多目标粒子群算法的地铁牵引能耗优化方法。该方法首先建立了地铁牵引能耗优化模型,然后利用多目标粒子群算法对优化模型进行求解,最后通过仿真验证了该方法的有效性。

1. 地铁牵引能耗优化模型

地铁牵引能耗优化模型是一个多目标优化模型,其目标函数包括:

  • 最小化地铁牵引能耗

  • 最小化地铁运行时间

  • 最小化地铁运行成本

约束条件包括:

  • 地铁运行速度不能超过最大速度

  • 地铁运行加速度不能超过最大加速度

  • 地铁运行减速度不能超过最大减速度

  • 地铁运行时间不能超过最长时间

2. 多目标粒子群算法

多目标粒子群算法是一种多目标优化算法,其基本原理是:

  1. 初始化粒子群,每个粒子表示一个候选解。

  2. 计算每个粒子的适应度值。

  3. 更新每个粒子的速度和位置。

  4. 重复步骤2和步骤3,直到达到终止条件。

3. 基于多目标粒子群算法的地铁牵引能耗优化方法

基于多目标粒子群算法的地铁牵引能耗优化方法的步骤如下:

  1. 初始化粒子群,每个粒子表示一个候选解。

  2. 计算每个粒子的适应度值。

  3. 更新每个粒子的速度和位置。

  4. 重复步骤2和步骤3,直到达到终止条件。

  5. 选择最优解作为地铁牵引能耗优化方案。

📣 部分代码

clcclear;close all;t0=cputime;%参数初始化arginitial();%限速和坡度约束处理,并且保存处理结果CacBrakeSpeedLimit();[Emax,Tmin]=CacMinTime();%多目标粒子群算法参数options.PopulationSize = 10;  %种群大小  options.MaxGenerations = 10;  %算法最大迭代次数options.Continue = 0 ;  %是否继续原来的优化,如果要继续则要传入种群options.Pop和速度参数options.Veo%正式开始优化for num=1:1    disp(['运行次数:',num2str(num)]);    [res,pos,velo]=PSO_d(options);    figure('Name','优化结果');    [flag,Energy,Time,MissError,overSpeed,sw,jerk] = CalcEJT(res,1);    fitness = CacFitNess(Energy,Time,MissError,overSpeed,jerk);    disp(['运行能耗:',num2str(Energy),' 运行时间:',num2str(Time), '  停车误差:',num2str(MissError),'  超限速误差:',num2str(overSpeed) ,'   舒适度:',num2str(jerk)])    runTime=cputime-t0;    Charaters=[Energy,Time,MissError,overSpeed,sw,jerk,fitness];    save('Result.mat','Charaters');     %保存数据   str=['Resul',num2str(num)];     save(str, 'Charaters');     %fid = fopen('0513data.txt','a+');     %for i= 1:length(Charaters)     %   fprintf(fid,'%.4f   ',Charaters(i));     %end     %fprintf(fid,'\r\n');     %fclose(fid);end

⛳️ 运行结果

4. 仿真验证

为了验证基于多目标粒子群算法的地铁牵引能耗优化方法的有效性,本文进行了仿真实验。仿真实验结果表明,该方法能够有效降低地铁牵引能耗,并且能够满足地铁运行速度、加速度、减速度和运行时间等约束条件。

5. 结论

本文提出了一种基于多目标粒子群算法的地铁牵引能耗优化方法。该方法能够有效降低地铁牵引能耗,并且能够满足地铁运行速度、加速度、减速度和运行时间等约束条件。仿真实验结果表明,该方法具有较好的优化效果。

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值