基于遗传算法求解带软时间窗+容量约束+成本(固定+运输+制冷+惩罚)的车辆路径规划CTWVRP问题附Matlab仿真

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

​智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

1. 问题描述

车辆路径规划问题(Vehicle Routing Problem, VRP)是一个经典的组合优化问题,它涉及到确定一组车辆的最佳路径,以满足一组客户的需求,同时最小化总成本或总距离。在实际应用中,VRP问题通常会受到各种约束条件的限制,例如时间窗约束、容量约束、成本约束等。

带软时间窗+容量约束+成本(固定+运输+制冷+惩罚)的车辆路径规划问题(Capacitated Vehicle Routing Problem with Soft Time Windows and Costs, CTWVRP)是VRP问题的一个变体,它考虑了以下约束条件:

  • **软时间窗约束:**客户的送货时间窗是软性的,即允许车辆在一定程度上偏离时间窗,但需要为此支付一定的惩罚成本。

  • **容量约束:**每辆车的运载能力是有限的,即每辆车只能运送一定数量的货物。

  • **成本约束:**车辆的运输成本包括固定成本、运输成本、制冷成本和惩罚成本。固定成本是车辆出车的固定费用,运输成本是车辆行驶的距离和时间的函数,制冷成本是车辆运送冷藏货物的费用,惩罚成本是车辆偏离时间窗的费用。

2. 遗传算法求解方法

遗传算法(Genetic Algorithm, GA)是一种启发式算法,它模拟生物的进化过程来求解优化问题。GA的基本思想是:通过不断地选择、交叉和变异,使种群中的个体不断进化,最终找到最优解或接近最优解的解。

GA求解CTWVRP问题的步骤如下:

  1. **初始化种群:**随机生成一定数量的个体,每个个体表示一条可能的车辆路径。

  2. **评估种群:**计算每个个体的适应度值,适应度值越高,表示个体越好。

  3. **选择:**根据个体的适应度值,选择一部分个体进入下一代种群。

  4. **交叉:**对选出的个体进行交叉操作,产生新的个体。

  5. **变异:**对新的个体进行变异操作,产生新的个体。

  6. **重复步骤2-5:**直到达到终止条件(例如,达到最大迭代次数或找到最优解)。

📣 部分代码

%% 变异操作%输入:%SelCh  被选择的个体%Pm     变异概率%输出:% SelCh 变异后的个体function SelCh=Mutate(SelCh,Pm)[NSel,L]=size(SelCh);for i=1:NSel    if Pm>=rand        R=randperm(L);        SelCh(i,R(1:2))=SelCh(i,R(2:-1:1));    endend

⛳️ 运行结果

3. 实验结果

为了验证GA算法的有效性,我们对CTWVRP问题进行了实验。实验结果表明,GA算法能够在较短的时间内找到高质量的解,并且随着种群规模的增加和迭代次数的增加,GA算法的求解精度不断提高。

4. 结论

GA算法是一种有效的方法来求解CTWVRP问题。GA算法能够在较短的时间内找到高质量的解,并且随着种群规模的增加和迭代次数的增加,GA算法的求解精度不断提高。

🔗 参考文献

[1] 蒋波.基于遗传算法的带时间窗车辆路径优化问题研究[D].北京交通大学,2010.DOI:10.7666/d.y1780379.

[2] 肖天国.带软时间窗的开放式车辆路径问题研究[D].中南大学,2009.DOI:10.7666/d.y1535358.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值