✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 问题描述
车辆路径规划问题(Vehicle Routing Problem, VRP)是一个经典的组合优化问题,它涉及到确定一组车辆的最佳路径,以满足一组客户的需求,同时最小化总成本或总距离。在实际应用中,VRP问题通常会受到各种约束条件的限制,例如时间窗约束、容量约束、成本约束等。
带软时间窗+容量约束+成本(固定+运输+制冷+惩罚)的车辆路径规划问题(Capacitated Vehicle Routing Problem with Soft Time Windows and Costs, CTWVRP)是VRP问题的一个变体,它考虑了以下约束条件:
-
**软时间窗约束:**客户的送货时间窗是软性的,即允许车辆在一定程度上偏离时间窗,但需要为此支付一定的惩罚成本。
-
**容量约束:**每辆车的运载能力是有限的,即每辆车只能运送一定数量的货物。
-
**成本约束:**车辆的运输成本包括固定成本、运输成本、制冷成本和惩罚成本。固定成本是车辆出车的固定费用,运输成本是车辆行驶的距离和时间的函数,制冷成本是车辆运送冷藏货物的费用,惩罚成本是车辆偏离时间窗的费用。
2. 遗传算法求解方法
遗传算法(Genetic Algorithm, GA)是一种启发式算法,它模拟生物的进化过程来求解优化问题。GA的基本思想是:通过不断地选择、交叉和变异,使种群中的个体不断进化,最终找到最优解或接近最优解的解。
GA求解CTWVRP问题的步骤如下:
-
**初始化种群:**随机生成一定数量的个体,每个个体表示一条可能的车辆路径。
-
**评估种群:**计算每个个体的适应度值,适应度值越高,表示个体越好。
-
**选择:**根据个体的适应度值,选择一部分个体进入下一代种群。
-
**交叉:**对选出的个体进行交叉操作,产生新的个体。
-
**变异:**对新的个体进行变异操作,产生新的个体。
-
**重复步骤2-5:**直到达到终止条件(例如,达到最大迭代次数或找到最优解)。
📣 部分代码
%% 变异操作
%输入:
%SelCh 被选择的个体
%Pm 变异概率
%输出:
% SelCh 变异后的个体
function SelCh=Mutate(SelCh,Pm)
[NSel,L]=size(SelCh);
for i=1:NSel
if Pm>=rand
R=randperm(L);
SelCh(i,R(1:2))=SelCh(i,R(2:-1:1));
end
end
⛳️ 运行结果
3. 实验结果
为了验证GA算法的有效性,我们对CTWVRP问题进行了实验。实验结果表明,GA算法能够在较短的时间内找到高质量的解,并且随着种群规模的增加和迭代次数的增加,GA算法的求解精度不断提高。
4. 结论
GA算法是一种有效的方法来求解CTWVRP问题。GA算法能够在较短的时间内找到高质量的解,并且随着种群规模的增加和迭代次数的增加,GA算法的求解精度不断提高。
🔗 参考文献
[1] 蒋波.基于遗传算法的带时间窗车辆路径优化问题研究[D].北京交通大学,2010.DOI:10.7666/d.y1780379.
[2] 肖天国.带软时间窗的开放式车辆路径问题研究[D].中南大学,2009.DOI:10.7666/d.y1535358.