【优化设计】基于遗传算法的紧凑型一级直齿轮减速器优化设计附MATLAB代码

 ✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要

本文提出了一种基于遗传算法的紧凑型一级直齿轮减速器优化设计方法。该方法首先建立了紧凑型一级直齿轮减速器的数学模型,然后利用遗传算法对减速器的几何参数和材料参数进行优化设计。最后,通过仿真分析验证了优化结果的有效性。

1. 紧凑型一级直齿轮减速器数学模型

紧凑型一级直齿轮减速器主要由主动齿轮、从动齿轮和齿轮箱组成。主动齿轮和从动齿轮均为直齿轮,齿轮箱为圆柱形。减速器的几何参数包括主动齿轮齿数、从动齿轮齿数、齿轮箱直径和齿轮箱长度。减速器的材料参数包括主动齿轮材料和从动齿轮材料。

减速器的数学模型可以表示为:

 

J = m1r1^2 + m2r2^2
T = F1r1 = F2r2
ω1 = ω2i

式中:

  • J为减速器的转动惯量;

  • m1和m2分别为主、从动齿轮的质量;

  • r1和r2分别为主、从动齿轮的齿轮半径;

  • F1和F2分别为主、从动齿轮上的齿轮力;

  • ω1和ω2分别为主、从动齿轮的角速度;

  • i为减速比。

2. 基于遗传算法的优化设计方法

遗传算法是一种模拟生物进化过程的优化算法。它通过不断地选择、交叉和变异,使种群中的个体不断进化,最终找到最优解。

在紧凑型一级直齿轮减速器优化设计中,遗传算法的具体步骤如下:

  1. 初始化种群。种群中的每个个体代表一个减速器设计方案,包括减速器的几何参数和材料参数。

  2. 计算每个个体的适应度。适应度函数可以根据减速器的性能指标来定义,例如减速器的效率、重量和成本。

  3. 选择。根据个体的适应度,选择种群中的优秀个体进入下一代。

  4. 交叉。将两个优秀的个体进行交叉,产生新的个体。

  5. 变异。对新的个体进行变异,产生新的设计方案。

  6. 重复步骤2-5,直到达到终止条件。终止条件可以是达到最大迭代次数或种群收敛。

📣 部分代码

function gen_tab = random_g1(Ncand,Nvar,Np_param, P_param, b_param)% Function that randomly initializes all candidates in the first generation% gen_tab -- Matrix, [Ncand*Nvar] size  % Ncand -- number of candidates to genereate% Nvar -- number of design variables% Np_param -- [min_teeth, max_teeth]% P_param -- [min diametral pitch, max diametral pitch]% b_param -- [min face width, max face width]% gen_tab = [[Np, P, b]]% Initialize matrixgen_tab = zeros(Ncand,Nvar);szz = size(gen_tab, 1);% Cycle through each row and fill in with appropriate samplesfor k = 1:szz    % Randomly select starting numbers    Np_samp = random_sample_from_range(Np_param(1),Np_param(2),1);    P_samp = random_sample_from_range(P_param(1),P_param(2),1);    %b_samp = random_sample_from_range(b_param(1),b_param(2),1); %    %Rememeber, we have to apply constraint on the teeth width also        b_low_lim = 9/P_samp;    b_high_lim = 14/P_samp;    %b_samp = random_sample_from_range(b_low_lim,b_high_lim,1);    b_samp = b_low_lim + ((b_high_lim + b_low_lim) / 16); % Emperical equation, works    %b_samp = b_low_lim; % Emperical equation, works        % Form a row with these numbers    rowx = [Np_samp, P_samp, b_samp];    % Update gen_tab matrix    gen_tab(k,:) = rowx;endend

⛳️ 运行结果

3. 仿真分析

为了验证优化结果的有效性,对优化后的减速器进行了仿真分析。仿真结果表明,优化后的减速器在效率、重量和成本方面均有显著的提高。

4. 结论

本文提出了一种基于遗传算法的紧凑型一级直齿轮减速器优化设计方法。该方法能够有效地提高减速器的性能指标,具有较高的实用价值。

🔗 参考文献

[1]柳敏飞.基于MATLAB遗传算法的齿轮减速器的优化设计[J].组合机床与自动化加工技术, 2009(8):4.DOI:10.3969/j.issn.1001-2265.2009.08.010.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值