✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
1. 问题描述
车辆路径规划问题(VRP)是一个经典的组合优化问题,其目标是在满足一系列约束条件下,为一组车辆设计最优的路径,以最小化总成本或总距离。在现实世界中,VRP问题经常被用于解决物流配送、快递运输、垃圾收集等问题。
带考虑碳排放的软时间窗容量约束的车辆路径规划问题(CVRPTW)是VRP问题的一个变种,它考虑了车辆的碳排放量、时间窗约束和容量约束。在CVRPTW问题中,车辆的碳排放量与行驶距离和行驶速度有关,时间窗约束是指车辆必须在规定的时间窗口内到达客户地点,容量约束是指车辆的装载量不能超过其最大容量。
2. 遗传算法
遗传算法(GA)是一种启发式算法,它模拟了生物进化的过程来求解优化问题。GA的基本思想是,首先随机生成一组解(称为种群),然后通过选择、交叉和变异等操作来产生新的解。经过多次迭代后,种群中的解会逐渐收敛到最优解附近。
3. 基于遗传算法的CVRPTW求解方法
为了求解CVRPTW问题,我们设计了一种基于遗传算法的求解方法。该方法的主要步骤如下:
-
编码:将CVRPTW问题编码成染色体。染色体由一组基因组成,每个基因代表一个客户。染色体的顺序表示车辆的行驶顺序。
-
初始化:随机生成一组染色体,形成初始种群。
-
适应度计算:计算每个染色体的适应度。适应度函数由以下四部分组成:
-
固定成本:车辆的固定成本,包括车辆的购置成本、折旧成本和维护成本等。
-
运输成本:车辆的运输成本,包括车辆的燃油成本、通行费成本和司机工资成本等。
-
制冷成本:车辆的制冷成本,包括车辆的制冷设备成本、制冷能耗成本和制冷维护成本等。
-
惩罚成本:车辆违反时间窗约束或容量约束的惩罚成本。
-
-
选择:根据染色体的适应度,选择出一些染色体进入下一代种群。
-
交叉:对选出的染色体进行交叉操作,产生新的染色体。
-
变异:对新的染色体进行变异操作,产生新的染色体。
-
重复步骤3-6,直到满足终止条件。
📣 部分代码
% function lineStyles = linspecer(N)
% This function creates an Nx3 array of N [R B G] colors
% These can be used to plot lots of lines with distinguishable and nice
% looking colors.
%
% lineStyles = linspecer(N); makes N colors for you to use: lineStyles(ii,:)
%
% colormap(linspecer); set your colormap to have easily distinguishable
% colors and a pleasing aesthetic
%
% lineStyles = linspecer(N,'qualitative'); forces the colors to all be distinguishable (up to 12)
% lineStyles = linspecer(N,'sequential'); forces the colors to vary along a spectrum
%
% % Examples demonstrating the colors.
%
% LINE COLORS
% N=6;
% X = linspace(0,pi*3,1000);
% Y = bsxfun(@(x,n)sin(x+2*n*pi/N), X.', 1:N);
% C = linspecer(N);
% axes('NextPlot','replacechildren', 'ColorOrder',C);
% plot(X,Y,'linewidth',5)
% ylim([-1.1 1.1]);
%
% SIMPLER LINE COLOR EXAMPLE
% N = 6; X = linspace(0,pi*3,1000);
% C = linspecer(N)
% hold off;
% for ii=1:N
% Y = sin(X+2*ii*pi/N);
% plot(X,Y,'color',C(ii,:),'linewidth',3);
% hold on;
% end
%
% COLORMAP EXAMPLE
% A = rand(15);
% figure; imagesc(A); % default colormap
% figure; imagesc(A); colormap(linspecer); % linspecer colormap
%
% See also NDHIST, NHIST, PLOT, COLORMAP, 43700-cubehelix-colormaps
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% by Jonathan Lansey, March 2009-2013 ?Lansey at gmail.com %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%% credits and where the function came from
% The colors are largely taken from:
% http://colorbrewer2.org and Cynthia Brewer, Mark Harrower and The Pennsylvania State University
%
%
% She studied this from a phsychometric perspective and crafted the colors
% beautifully.
%
% I made choices from the many there to decide the nicest once for plotting
% lines in Matlab. I also made a small change to one of the colors I
% thought was a bit too bright. In addition some interpolation is going on
% for the sequential line styles.
%
%
%%
function lineStyles=linspecer(N,varargin)
if nargin==0 % return a colormap
lineStyles = linspecer(128);
return;
end
if ischar(N)
lineStyles = linspecer(128,N);
return;
end
if N<=0 % its empty, nothing else to do here
lineStyles=[];
return;
end
% interperet varagin
qualFlag = 0;
colorblindFlag = 0;
if ~isempty(varargin)>0 % you set a parameter?
switch lower(varargin{1})
case {'qualitative','qua'}
if N>12 % go home, you just can't get this.
warning('qualitiative is not possible for greater than 12 items, please reconsider');
else
if N>9
warning(['Default may be nicer for ' num2str(N) ' for clearer colors use: whitebg(''black''); ']);
end
end
qualFlag = 1;
case {'sequential','seq'}
lineStyles = colorm(N);
return;
case {'white','whitefade'}
lineStyles = whiteFade(N);return;
case 'red'
lineStyles = whiteFade(N,'red');return;
case 'blue'
lineStyles = whiteFade(N,'blue');return;
case 'green'
lineStyles = whiteFade(N,'green');return;
case {'gray','grey'}
lineStyles = whiteFade(N,'gray');return;
case {'colorblind'}
colorblindFlag = 1;
otherwise
warning(['parameter ''' varargin{1} ''' not recognized']);
end
end
% *.95
% predefine some colormaps
set3 = colorBrew2mat({[141, 211, 199];[ 255, 237, 111];[ 190, 186, 218];[ 251, 128, 114];[ 128, 177, 211];[ 253, 180, 98];[ 179, 222, 105];[ 188, 128, 189];[ 217, 217, 217];[ 204, 235, 197];[ 252, 205, 229];[ 255, 255, 179]}');
set1JL = brighten(colorBrew2mat({[228, 26, 28];[ 55, 126, 184]; [ 77, 175, 74];[ 255, 127, 0];[ 255, 237, 111]*.85;[ 166, 86, 40];[ 247, 129, 191];[ 153, 153, 153];[ 152, 78, 163]}'));
set1 = brighten(colorBrew2mat({[ 55, 126, 184]*.85;[228, 26, 28];[ 77, 175, 74];[ 255, 127, 0];[ 152, 78, 163]}),.8);
% colorblindSet = {[215,25,28];[253,174,97];[171,217,233];[44,123,182]};
colorblindSet = {[215,25,28];[253,174,97];[171,217,233]*.8;[44,123,182]*.8};
set3 = dim(set3,.93);
if colorblindFlag
switch N
% sorry about this line folks. kind of legacy here because I used to
% use individual 1x3 cells instead of nx3 arrays
case 4
lineStyles = colorBrew2mat(colorblindSet);
otherwise
colorblindFlag = false;
warning('sorry unsupported colorblind set for this number, using regular types');
end
end
if ~colorblindFlag
switch N
case 1
lineStyles = { [ 55, 126, 184]/255};
case {2, 3, 4, 5 }
lineStyles = set1(1:N);
case {6 , 7, 8, 9}
lineStyles = set1JL(1:N)';
case {10, 11, 12}
if qualFlag % force qualitative graphs
lineStyles = set3(1:N)';
else % 10 is a good number to start with the sequential ones.
lineStyles = cmap2linspecer(colorm(N));
end
otherwise % any old case where I need a quick job done.
lineStyles = cmap2linspecer(colorm(N));
end
end
lineStyles = cell2mat(lineStyles);
end
% extra functions
function varIn = colorBrew2mat(varIn)
for ii=1:length(varIn) % just divide by 255
varIn{ii}=varIn{ii}/255;
end
end
function varIn = brighten(varIn,varargin) % increase the brightness
if isempty(varargin),
frac = .9;
else
frac = varargin{1};
end
for ii=1:length(varIn)
varIn{ii}=varIn{ii}*frac+(1-frac);
end
end
function varIn = dim(varIn,f)
for ii=1:length(varIn)
varIn{ii} = f*varIn{ii};
end
end
function vOut = cmap2linspecer(vIn) % changes the format from a double array to a cell array with the right format
vOut = cell(size(vIn,1),1);
for ii=1:size(vIn,1)
vOut{ii} = vIn(ii,:);
end
end
%%
% colorm returns a colormap which is really good for creating informative
% heatmap style figures.
% No particular color stands out and it doesn't do too badly for colorblind people either.
% It works by interpolating the data from the
% 'spectral' setting on http://colorbrewer2.org/ set to 11 colors
% It is modified a little to make the brightest yellow a little less bright.
function cmap = colorm(varargin)
n = 100;
if ~isempty(varargin)
n = varargin{1};
end
if n==1
cmap = [0.2005 0.5593 0.7380];
return;
end
if n==2
cmap = [0.2005 0.5593 0.7380;
0.9684 0.4799 0.2723];
return;
end
frac=.95; % Slight modification from colorbrewer here to make the yellows in the center just a bit darker
cmapp = [158, 1, 66; 213, 62, 79; 244, 109, 67; 253, 174, 97; 254, 224, 139; 255*frac, 255*frac, 191*frac; 230, 245, 152; 171, 221, 164; 102, 194, 165; 50, 136, 189; 94, 79, 162];
x = linspace(1,n,size(cmapp,1));
xi = 1:n;
cmap = zeros(n,3);
for ii=1:3
cmap(:,ii) = pchip(x,cmapp(:,ii),xi);
end
cmap = flipud(cmap/255);
end
function cmap = whiteFade(varargin)
n = 100;
if nargin>0
n = varargin{1};
end
thisColor = 'blue';
if nargin>1
thisColor = varargin{2};
end
switch thisColor
case {'gray','grey'}
cmapp = [255,255,255;240,240,240;217,217,217;189,189,189;150,150,150;115,115,115;82,82,82;37,37,37;0,0,0];
case 'green'
cmapp = [247,252,245;229,245,224;199,233,192;161,217,155;116,196,118;65,171,93;35,139,69;0,109,44;0,68,27];
case 'blue'
cmapp = [247,251,255;222,235,247;198,219,239;158,202,225;107,174,214;66,146,198;33,113,181;8,81,156;8,48,107];
case 'red'
cmapp = [255,245,240;254,224,210;252,187,161;252,146,114;251,106,74;239,59,44;203,24,29;165,15,21;103,0,13];
otherwise
warning(['sorry your color argument ' thisColor ' was not recognized']);
end
cmap = interpomap(n,cmapp);
end
% Eat a approximate colormap, then interpolate the rest of it up.
function cmap = interpomap(n,cmapp)
x = linspace(1,n,size(cmapp,1));
xi = 1:n;
cmap = zeros(n,3);
for ii=1:3
cmap(:,ii) = pchip(x,cmapp(:,ii),xi);
end
cmap = (cmap/255); % flipud??
end
⛳️ 运行结果
4. 实验结果
我们使用了一组标准的CVRPTW测试实例来对我们的算法进行测试。实验结果表明,我们的算法能够在合理的时间内找到高质量的解。与其他算法相比,我们的算法在固定成本、运输成本、制冷成本和惩罚成本方面都具有较好的性能。
5. 结论
我们提出了一种基于遗传算法的CVRPTW求解方法。该方法能够在合理的时间内找到高质量的解,并且在固定成本、运输成本、制冷成本和惩罚成本方面都具有较好的性能。我们的算法可以用于解决现实世界中的物流配送、快递运输、垃圾收集等问题。
🔗 参考文献
[1] 陈婷.基于带时间窗的快递车辆路线安排问题研究[D].华侨大学[2024-02-07].
[2] 丁惠琳.考虑货物载重的软时间窗电动车辆路径优化研究[D].重庆邮电大学[2024-02-07].
[3] 葛显龙,辜羽洁,谭柏川.基于第三方带软时间窗约束的车辆路径问题研究[J].计算机应用研究, 2015, 32(3):5.DOI:10.3969/j.issn.1001-3695.2015.03.011.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类