✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
数字水印是一种将版权信息或其他数据嵌入到数字图像中的技术,以保护图像的版权和完整性。本文提出了一种基于离散余弦变换(DCT)和奇异值分解(SVD)的数字水印嵌入攻击提取算法。该算法利用DCT的能量集中特性和SVD的奇异值分解特性,将水印嵌入到图像的高频分量中,同时抵抗常见的攻击,如滤波、JPEG压缩和裁剪。本文还介绍了信噪比(SNR)和结构相似性(SSIM)指标,用于评估水印嵌入和提取的性能。
1. 算法原理
1.1 水印嵌入
-
将原始图像分解为DCT域。
-
对DCT系数进行SVD分解,得到奇异值矩阵U、对角矩阵Σ和右奇异值矩阵V。
-
将水印信息嵌入到Σ的对角元素中,通过修改其值。
-
将修改后的Σ与U和V重构,得到嵌入水印的DCT系数。
-
将嵌入水印的DCT系数逆变换回空间域,得到嵌入水印的图像。
1.2 水印提取
-
将嵌入水印的图像分解为DCT域。
-
对DCT系数进行SVD分解,得到奇异值矩阵U、对角矩阵Σ和右奇异值矩阵V。
-
从Σ的对角元素中提取水印信息。
-
将提取的水印信息与原始水印进行比较,计算相似度。
2. 攻击抵抗
该算法通过将水印嵌入到图像的高频分量中,增强了对攻击的抵抗力。具体如下:
-
**滤波:**高频分量对滤波更敏感,因此水印嵌入在高频分量中可以抵抗低通滤波和高通滤波。
-
**JPEG压缩:**JPEG压缩会丢弃高频分量,但该算法将水印嵌入到高频分量中,可以抵抗JPEG压缩。
-
**裁剪:**裁剪会移除图像的一部分,但该算法将水印嵌入到整个图像中,可以抵抗裁剪。
3. 性能评估
3.1 信噪比(SNR)
SNR用于衡量嵌入水印后的图像质量,计算公式为:
SNR = 10log10(P_s / P_n)
其中,P_s是原始图像的功率,P_n是嵌入水印后图像的噪声功率。
3.2 结构相似性(SSIM)
SSIM用于衡量嵌入水印后的图像与原始图像的结构相似性,计算公式为:
SSIM = (2μ_xμ_y + C_1) / (μ_x^2 + μ_y^2 + C_1) * (2σ_{xy} + C_2) / (σ_x^2 + σ_y^2 + C_2)
其中,μ_x和μ_y分别是原始图像和嵌入水印后图像的均值,σ_x^2和σ_y^2分别是原始图像和嵌入水印后图像的方差,σ_{xy}是原始图像和嵌入水印后图像的协方差,C_1和C_2是常数。
📣 部分代码
function [I,ALLV_B ] = row_col_blank( NEW,A )
I = NEW;
k=1;
l=1;
R_C_B = zeros(16,16,1024);
ALLV_B = zeros(16,16,1024);
I(14,:) = 0;
I(169,:) = 0;
I(119,:) = 0;
I(:,26) = 0;
I(:,99) = 0;
I(:,192) = 0;
figure
subplot(1,2,1)
imshow(NEW)
title('嵌入水印的图像')
subplot(1,2,2)
imshow(I)
title('After ROW.COL.BLANKING attack')
for i=1:16:512
for j=1:16:512
R_C_B(:,:,k) = I(i:i+16-1,j:j+16-1);
[~,~,VB] = svd(R_C_B(:,:,k));
ALLV_B(:,:,l) = VB;
k=k+1;
l=l+1;
end
end
psnr_R_C_blank = psnr(I,A)
ssim_R_C_blank = ssim(I,A)
end
⛳️ 运行结果
4. 实验结果
本文在Lena图像上进行了实验,嵌入的水印为512×512的二值图像。实验结果表明:
-
该算法可以有效地将水印嵌入到图像中,SNR保持在30dB以上。
-
该算法对滤波、JPEG压缩和裁剪等攻击具有较强的抵抗力。
-
SSIM指标表明,嵌入水印后的图像与原始图像具有很高的结构相似性。
5. 结论
本文提出的基于DCT-SVD的数字水印嵌入攻击提取算法具有较高的嵌入质量、攻击抵抗力和提取精度。该算法可以有效地保护图像的版权和完整性,在数字图像版权保护和认证等领域具有广泛的应用前景。
🔗 参考文献
[1] 曾志华.基于DCT-SVD的数字水印的理论和技术[D].江南大学,2009.DOI:CNKI:CDMD:2.2009.013995.
[2] 曾志华,钱雪忠.基于DCT和SVD联合的数字水印算法[J].计算机工程与设计, 2008, 29(5):3.DOI:10.3969/j.issn.1000-7024.2007.01.036.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类