✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
正交频分复用(OFDM)是一种多载波调制技术,广泛应用于无线通信系统中。比特加载技术是一种优化OFDM系统性能的有效方法,通过合理分配比特和功率资源,可以提高系统容量和抗干扰能力。本文将介绍基于比特加载技术的OFDM系统自适应功率和比特资源分配算法,并分析其性能。
引言
OFDM系统中,每个子载波携带一个调制符号,符号的调制方式和功率分配会影响系统的整体性能。比特加载技术通过根据信道条件和子载波特性调整比特分配和功率分配,可以优化系统性能。
比特加载算法
比特加载算法的目标是最大化系统容量或抗干扰能力。常用的比特加载算法包括:
-
**水填充算法:**根据信道信噪比(SNR)对子载波进行水填充,将比特分配到SNR较高的子载波。
-
**最大最小算法:**根据信道SNR对子载波进行排序,将比特分配到SNR最大的子载波,直到达到最大比特率。
-
**比特误码率(BER)匹配算法:**根据信道SNR和子载波调制方式,计算每个子载波的BER,将比特分配到BER较低的子载波。
功率分配算法
功率分配算法的目标是优化系统抗干扰能力。常用的功率分配算法包括:
-
**等功率分配:**将功率均匀分配到所有子载波。
-
**比例公平分配:**根据子载波的信道SNR调整功率分配,确保每个子载波的抗干扰能力相同。
-
**最大最小功率分配:**将功率分配给SNR最低的子载波,直到达到最大比特率。
自适应功率和比特资源分配算法
自适应功率和比特资源分配算法结合了比特加载算法和功率分配算法,根据信道条件动态调整比特和功率分配。常用的自适应算法包括:
-
**信道自适应比特加载算法:**根据信道SNR和子载波特性,实时调整比特加载算法的参数。
-
**信道自适应功率分配算法:**根据信道SNR和子载波调制方式,实时调整功率分配算法的参数。
-
**联合信道自适应比特加载和功率分配算法:**综合考虑信道SNR和子载波特性,同时调整比特加载算法和功率分配算法的参数。
性能分析
基于比特加载技术的OFDM系统自适应功率和比特资源分配算法可以有效提高系统性能。通过仿真和实验,可以验证算法的以下性能优势:
-
提高系统容量:通过优化比特和功率分配,可以增加系统传输的比特数。
-
降低系统误码率:通过将比特分配到抗干扰能力强的子载波,可以降低系统误码率。
-
提高系统抗干扰能力:通过优化功率分配,可以增强系统对干扰的抵抗力。
结论
基于比特加载技术的OFDM系统自适应功率和比特资源分配算法是一种有效的性能优化方法。通过合理分配比特和功率资源,可以提高系统容量、降低误码率和增强抗干扰能力。随着无线通信技术的发展,比特加载技术将继续在OFDM系统中发挥重要作用。
📣 部分代码
%Hughes-Hartogs Algorithm Demo比特加载技术
%--------------------------------
%-------------------------
N_subc=64;
P_av=1;
Pt=P_av*N_subc;
SNR_av=0;
Noise=P_av./10.^(SNR_av./10);
B=1e6;
N_psd=Noise./(B/N_subc);
BER=1e-4;
M=8;
Rb=128;
H=random('rayleigh',1,1,N_subc);
%--------------------------------------
[bit_alloc, power_alloc]=Hughes_Hartogs(N_subc,Rb,M,BER,N_psd,H);
bit_alloc
power_alloc=Pt.*(power_alloc./sum(power_alloc))
%--------------------------------------
clf;
figure(1);
subplot(2,1,1);
stem(bit_alloc,'fill','MarkerSize',3);
hold on;
plot(H,'-r');
ylabel('比特分配');
xlabel('子载波');
subplot(2,1,2);
stem(power_alloc,'fill','MarkerSize',3);
hold on;
plot(H,'-r');
ylabel('资源分配');
xlabel('子载波');
%--------------------------------
figure(2);
subplot(3,1,1);
plot(H,'-r');
subplot(3,1,2);
stem(bit_alloc,'fill','MarkerSize',3);
subplot(3,1,3);
stem(power_alloc,'fill','MarkerSize',3);
ylabel('资源分配');
xlabel('子载波');
grid on;
⛳️ 运行结果
🔗 参考文献
[1] 汤丽梅.多用户OFDM系统下行链路资源分配算法研究[D].杭州电子科技大学,2016.DOI:10.7666/d.D823766.
[2] 程平勇.多用户MIMO-OFDM资源分配技术研究[D].南京邮电大学,2010.DOI:10.7666/d.y1755152.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类